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Abstract

In this study we develop a gradient theory of small-deformation single-crystal plasticity that accounts for geomet-

rically necessary dislocations (GNDs). The resulting framework is used to discuss grain boundaries. The grains are

allowed to slip along the interface, but growth phenomenona and phase transitions are neglected. The bulk theory is

based on the introduction of a microforce balance for each slip system and includes a defect energy depending on a

suitable measure of GNDs. The microforce balances are shown to be equivalent to nonlocal yield conditions for the

individual slip systems, yield conditions that feature backstresses resulting from energy stored in dislocations. When

applied to a grain boundary the theory leads to concomitant yield conditions: relative slip of the grains is activated

when the shear stress reaches a suitable threshold; plastic slip in bulk at the grain boundary is activated only when the

local density of GNDs reaches an assigned threshold. Consequently, in the initial stages of plastic deformation the grain

boundary acts as a barrier to plastic slip, while in later stages the interface acts as a source or sink for dislocations. We

obtain an exact solution for a simple problem in plane strain involving a semi-infinite compressed specimen that abuts a

rigid material. We view this problem as an approximation to a situation involving a grain boundary between a grain

with slip systems aligned for easy flow and a grain whose slip system alignment severely inhibits flow. The solution

exhibits large slip gradients within a thin layer at the grain boundary.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This paper has two goals. The first is a generalization of classical single crystal, small-deformation vi-

scoplasticity 1 that accounts for geometrically necessary dislocations, here referred to as GNDs. This
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generalization––formulated in terms of a microscopic balance involving forces work conjugate to slip in

conjunction with the kinematics of GNDs (Burgers, 1939; Kr€ooner, 1960)––is based on and follows closely

its finite deformational counterpart developed by Gurtin (2002).

Our second goal, which builds on the single-crystal theory discussed above, is a theory of bicrystals. Here
our use of microforces equipped with their peculiar balance allows for a direct characterization of grain

boundaries based on physical quantities associated directly with the individual slip systems.

1.1. Classical single-crystal viscoplasticity

Let uðx; tÞ denote the displacement of an arbitrary point x in B, the region of space occupied by the body.
The classical theory of plasticity is based on the decomposition 2

ru ¼ He þHp; ð1:1Þ
in which He represents stretching and rotation of the lattice, while Hp represents the evolution of dislo-
cations through the lattice. The symmetric and skew parts of He, namely

Ee ¼ 1
2
ðHe þHeTÞ and We ¼ 1

2
ðHe �HeTÞ; ð1:2Þ

represent the lattice strain and the lattice rotation. Single-crystal plasticity is based on the additional hypo-

thesis that plastic flow take place through slip on prescribed slip systems a ¼ 1; 2; . . . ;A, with each system a
defined by a slip direction sa and a slip-plane normal ma, where

sa �ma ¼ 0; jsaj; jmaj ¼ 1; sa;ma ¼ constant: ð1:3Þ
This hypothesis manifests itself in the requirement that Hp be characterized by slips (microshears) caðx; tÞ on

the individual slip systems via the kinematic constitutive assumption

Hp ¼
XA
a¼1

casa 	ma: ð1:4Þ

Here and in what follows, lower case Greek superscripts a; b; . . . denote slip-system labels and as such have

the range 1; 2; . . . ;A. In the absence of work hardening the classical theory is typically based on viscoplastic

yield conditions

sa ¼ raj _ccajd sgn _cca: ð1:5Þ
Here sa, the resolved shear, is the macroscopic stress resolved on the ath slip system; the field ra > 0, the slip
resistance on a, is an internal state-variable consistent with a system of hardening equations

_rra ¼
XA
b¼1

kabðr1; r2; . . . ; rAÞj _ccbj; raðx; 0Þ ¼ ra
0 > 0; ð1:6Þ

where the moduli kab P 0 characterize strain-hardening due to slip; and d > 0 is a constant that charac-

terizes the rate dependence of the material. 3 These equations supplemented by the local momentum ba-

lance and a standard elastic stress–strain relation form the basic equations of the theory.

2 We use lightface for scalars ða; b;A; . . .Þ; lower-case boldface for vectors ða; b; . . .Þ; upper-case boldface for tensors ðE;T; . . .Þ. We

write trT and TT for the trace and transpose of a (second-order) tensor T and use a ‘‘dot’’ to denote the inner product of tensors:

T � E ¼ TijEij (using cartesian components and summation convention). Given any vector u, ðu
) is the skew tensor defined by

ðu
Þij ¼ eirjur. For C a fourth-order tensor and E a second-order tensor, ðC½E�Þij ¼ CijklEkl. For u a vector field and T a tensor field,

ðruÞij ¼ oui=oxj, ðdivTÞi ¼ oTij=oxj, and ðcurlTÞij ¼ eipqoTjq=oxp.
3 Most metals at room temperature are almost rate independent and as such would be described by small values of d.
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1.2. Generalization of the classical theory: a gradient theory that accounts for GNDs

The plastic distortion Hp is not the gradient of a vector field, and GNDs may be characterized by the

closure failure of circuits as mapped by Hp, and hence by the geometric dislocation tensor

G ¼ curlHp: ð1:7Þ
Here we generalize the classical theory by allowing for constitutive dependences on G. We accomplish this

by developing the theory within a framework that allows for microforces whose working accompanies slip

as described by the fields ca. This microforce system consists of vector stresses na and scalar internal forces

pa whose working, within any subbody R, is given byXA
a¼1

Z
R
ðpa _cca þ na � r _ccaÞdV :

Because of the nonstandard nature of the microforces, we base our treatment on the principle of virtual

power. A consequence of this principle is that the classical Newtonian balances need be supplemented by a

microforce balance

divna þ sa � pa ¼ 0

for each slip-system a (Gurtin, 2000). The presence of the resolved shear sa couples the macroscopic and

microscopic systems.

We restrict attention to a purely mechanical theory with underlying ‘‘second law’’ the requirement that

the free-energy increase at a rate not greater than the rate at which work is performed. Letting w denote the

free energy per unit volume and T the stress, this leads to a local free-energy inequality

_ww � T � _EEe �
XA
a¼1

ðna � r _cca þ pa _ccaÞ6 0 ð1:8Þ

that is basic to our development of constitutive equations.

The classical theory fits trivially within this framework. To see this, assume that the free energy is

‘‘elastic’’, so that _ww ¼ T � _EEe, take na 
 0, and define pa ¼ raj _ccajd sgn _cca. The microforce balances sa ¼ pa are

then satisfied trivially, as is the free-energy inequality. For the classical theory the additional structure

represented by the microforce balances and second law is of little benefit. But the inclusion of GNDs leads

to a gradient theory, and here the microforce balances and second law yield a physical framework that
accounts in a natural manner for the distribution of GNDs within the body.

To develop a crystalline theory that accounts for GNDs, we take a physical approach that underlines the

reasons for specific constitutive assumptions:

i(i) We model distortions of the crystal lattice due to GNDs by augmenting the classical quadratic strain

energy with a defect energy WðGÞ. 4

(ii) Using the free-energy inequality as a guide, we develop appropriate constitutive equations for the mi-

croforce fields. The microforce balances and these constitutive equations together form the viscoplastic
yield conditions.

In appealing to the free-energy inequality we do not seek the most general possible theory, but one with

dissipative part close to its classical counterpart. In this spirit, we are led to constitutive equations for pa

and na, which, when substituted into the microforce balance, result in the viscoplastic yield conditions

4 A free energy of this form was introduced by Teodosiu (1970) within a classical framework involving only standard forces.
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sa ¼ raf ð _ccaÞ � divðma 
 TsaÞ; T ¼ oW=oG: ð1:9Þ

Here raf ð _ccaÞ, with ra consistent with the hardening equations (1.6) and f , possibly of the classical form

f ð _ccaÞ ¼ j _ccajd sgn _cca; ð1:10Þ

is dissipative, while

divðma 
 TsaÞ ð1:11Þ

is strictly energetic. The term (1.11) is characteristic of kinematic hardening; its negative represents a
backstress on the ath slip system (cf. the discrete-dislocation computations of Cleveringa et al. (1999), which

display large backstresses).

The chief conceptual difference between the classical theory and that presented here is that the yield

conditions (1.9) represent constitutively augmented microscopic force balances. This difference renders the

yield conditions nonlocal (in fact, dependent on first and second slip-gradients) and suggests the need for

supplementary boundary conditions; we here discuss idealized boundary conditions that represent mi-

croscopic counterparts of clamped and free boundaries. Because the underlying mechanics is based on the

principle of virtual power, the yield conditions and microtraction boundary conditions have a variational
formulation (cf. Gurtin, 2002) that should provide a useful basis for computations. The theory presented

here, which is the small-deformation counterpart of the finite-deformation theory of Gurtin (2002), differs

radically from other gradient theories of plasticity, 5 chiefly because of the central role played by the mi-

croforces and their abstract introduction as forces work conjugate to slip. For that reason, we sketch an

argument of Gurtin (2002) showing that the microstresses na represent counterparts within the present

theory of the classical Peach–Koehler force on a single dislocation.

1.3. Bicrystals: theory without interfacial energy

Grain boundaries influence the plastic behavior of polycrystalline solids in many ways: (i) they modify

the yield stress of the material, acting as barriers for glide dislocations in the initial stages of plastic de-

formation (cf. e.g., Hirth, 1972; Miracle, 1991; Mandal and Baker, 1995; Franc�ois et al., 1998; Polcarova

et al., 1998); (ii) they may, conversely, act as sources of bulk dislocations, and thus transmit plastic slip

between adjacent grains (Shen et al., 1988; Clark et al., 1991; Pestman and De Hosson, 1992); (iii) they may

also promote superplastic behavior by a macroscopic slip mechanism: the grains may slip one relative to the
other along the grain boundaries, and this may greatly enhance plastic deformation (see for instance

Margolin (1998) and Fu et al. (2001)); (iv) grain boundaries may also act as channels for mass and impurity

diffusion, or as nucleation or segregation sites for impurities or new-phase particles (Franc�ois et al., 1998).

We focus here on the influence of grain boundaries on the evolution of GNDs in the interior of the

grains, explicitly accounting for the barrier-effect on plastic slip.

The basic grain boundary relations that we obtain play the role of interfacial yield conditions. Specif-

ically: (i) the relative slip of the grains along the boundary is activated when the shear stress at the interface

reaches a suitable threshold; (ii) analogously, plastic slip within each grain at the grain boundary S is

5 Cf. Fleck and Hutchinson (1993) and Fleck et al. (1994), who develop small-strain theories that account for strain gradients within

a Toupin-Mindlin framework; this work is reformulated by Fleck and Hutchinson (2001) using microforces. Cf. also Naghdi and

Srinivasa (1993, 1994), who develop a finite Cosserat theory with GNDs characterized by curlFp (cf. Shizawa and Zbib, 1999). Earlier

attempts are those of Aifantis (1984, 1987), Wright and Batra (1987), Batra (1987), Batra and Kim (1988), Muhlhaus and Aifantis

(1991a,b), Zbib and Aifantis (1992). A survey of gradient plasticity theories is contained in the review of Fleck and Hutchinson (1997).

The theories mentioned above all involve higher-order boundary conditions. A discussion of gradient theories not equipped with

higher-order boundary conditions is beyond the present scope.
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allowed on any given slip system a only when the component of the microstress na normal to S reaches an

assigned threshold, thereby rendering the grain boundaries barriers to plastic slip in the initial stages of

plastic deformation. 6

Precisely, we consider a body composed of two grains, labelled by the integers 1; 2. Let S denote the
smooth surface that represents the grain boundary, and denote by nS the unit normal to S directed outward

from grain 1. We assume that the grains are rotated one relative to the other, and write

sa2 ¼ Rsa1; ma
2 ¼ Rma

1; ð1:12Þ

where R is an assigned rotation, and ðsa1;ma
1Þ and ðsa2;ma

2Þ are the slip systems in grains 1 and 2, respectively.

We allow the grains to slip, one relative to the other, along S, so that the displacement u may be discon-

tinuous across S. We write sut for the jump 7 of u across S and

d ¼ s _uut

for the grain-boundary slip-rate.

The first set of conditions at S consists of the classical traction balance

sTtnS ¼ 0

across S in conjunction with a balance between the tangential tractions and the grain-boundary shear-stress

s:

ðT1nSÞtan ¼ ðT2nSÞtan ¼ s:

Here ðTinSÞtan denotes the tangential projection of TinS on S. We consider a simple constitutive equation for

s of the form 8

s ¼ ujdjd d

jdj : ð1:13Þ

Here u is a positive modulus. As suggested by experiment (Biscondi, 1982), u should depend on the ori-

entation nS of the boundary and the misorientation R of the grains. Choosing d ¼ 0, the macroscopic slip

condition (1.13) is rate independent and represents a Coulomb-friction law for the relative slip of the grains
at the interface.

The second set of conditions at S have the form of viscoplastic boundary conditions for the microforces

na; viz.

na
1 � nS ¼ �fa

1j _cca
1j

d
sgn _cca

1; na
2 � nS ¼ fa

2j _cca
2j

d
sgn _cca

2; ð1:14Þ

with the fa
i positive moduli that measure the resistence of the grain boundary to plastic slip. These moduli

depend on the slip system under consideration, the orientation of the boundary with respect to the grains,

the relative misorientation of the grains, and the net accumulated slip from both grains at the grain

boundary (cf. (10.15) and (10.16)).

6 These boundary conditions should be compared to those of Shu and Fleck (1999), who discuss bicrystals within the Fleck and

Hutchinson (1997) theory. For grain-boundary conditions these authors augment more or less standard conditions with the

requirement that the normal gradient of the displacement be continuous.
7 We write u1 for the limit of a bulk field u at S from grain 1, u2 for the limit from grain 2, and sut ¼ u2 � u1.
8 Since slip across a grain boundary is generally a high temperature phenomenon, the condition (1.13) may be replaced by continuity

of the displacement across S under normal operating conditions (John Hutchinson, private communication). For convenience, we use

the same power d in all power laws.
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Since the microstress na is a function of the geometric dislocation tensor through the relation

na ¼ ma 
 ðoW=oGÞsa, the viscoplastic yield conditions (1.14) (with fa
i constant for the purpose of this

discussion) may be interpreted as follows for a body under monotone increasing loading:

(a) In the initial stages of deformation, where the density of GNDs is small, the microtraction na
1 � nS on,

say, the grain 1 side of S, should also be small and, by (1.14) and the assumption that the exponent d is

small, the slip-rate _cca
1 � 0. Thus in this regime, the grain boundary acts as a barrier for plastic slip. This

constraint should induce increasing slip gradients on a near S and this in turn should result in an increase in

the density of GNDs at S in grain 1. This should be a ‘‘boundary layer effect’’, not apparent away from S,
where one would expect the accumulation of GND to be of lesser magnitude. Thus we would expect the

dislocation content to exhibit a sharp peak at S during the initial stages of flow.

(b) As the density of GNDs increases at the grain boundary, the microtraction na
1 � nS also increases, and

this, by (1.14), eventually decrease the magnitude of the constraint on _cca
1, which may attain large values with

only minor changes in the microtraction na
1 � nS . With increasing loading this relatively constant behavior of

na
1 � nS would, since na ¼ naðGÞ, tend to (at least in part) hold the content of GNDs at S in grain 1 constant,

especially if many slip systems are active there.

The behavior specified in (a) and (b), which is a consequence of the microtraction conditions at the grain

boundary, seems consistent with the experiments of Sun et al. (1998, 2000), who determine the geometric

dislocation tensor in a bicrystal through measurements of lattice rotations.

We discuss the specialization of the theory to strict plane strain, as the results there are more transparent.

In particular, restricting attention to the rate-independent limit of the theory, we establish a more precise
version of the remarks (a) and (b).

Finally, we obtain an exact solution of a simple problem in plane-strain involving a semi-infinite

compressed specimen that abuts a rigid material. The solution may be viewed as an approximation to a

situation involving a grain boundary between a grain with slip systems aligned for easy flow and a grain

whose slip system alignment severely inhibits flow.

2. The geometric dislocation tensor G

2.1. G in terms of slip gradients

We base the theory on standard crystalline kinematics as specified in Section 1.1 with GNDs charac-

terized by the geometric dislocation tensor as defined in (1.7). Since curlru ¼ 0, we may use (1.1) to express

G in terms of either He or Hp:

G ¼ curlHp ¼ �curlHe: ð2:1Þ
Further, since

ðcurlðcasa 	maÞÞij ¼ dirq
oca

oxr
sajm

a
q ¼ ððrca 
maÞ 	 saÞij;

(1.4) yields

G ¼
XA
a¼1

ðrca 
maÞ 	 sa: ð2:2Þ

Let oS denote the boundary curve of an oriented plane surface S with unit normal e. By Stokes� theorem,
the Burgers vector corresponding to the curve oS is given byZ

oS
Hp dx ¼

Z
S
ðcurlHpÞTedA ¼

Z
S
GTedA: ð2:3Þ
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The vector field GTe therefore represents the Burgers vector (per unit area) for small loops on the plane P
with unit normal e; i.e., the local Burgers vector for those dislocation lines piercing P.

2.2. Digression: G in terms of dislocation densities

Tensors such as G meant to characterize specific distributions of dislocations are often expressed as

linear combinations of dislocations ql 	 s. Here q is a (signed) density, l 	 s is a dislocation dyad, and l and

s are unit vectors with s the Burgers direction and l the line direction (Nye, 1953). Moreover, an edge dis-

location has l ? s, a screw dislocation has l ¼ s, and a mixed dislocation has l and s neither parallel nor

orthogonal.

A class of expansions in terms of dislocations consistent with the crystalline structure of the material was

utilized by Kubin et al. (1992), Sun et al. (1998, 2000), and Arsenlis and Parks (1999), who note that ca-
nonical dislocations for slip on the ath system are: screw dislocations with Burgers direction sa; and edge

dislocations with Burgers direction sa and line direction

la ¼ ma 
 sa:

The canonical dislocation dyads for slip on a are therefore sa 	 sa and la 	 sa, and Arsenlis and Parks (1999)

have shown that the expression (2.2) may be rewritten as a decomposition of G in terms of such dyads;

using ‘‘�’’ and ‘‘‘’’ as screw and edge symbols, this expansion has the form

G ¼
XA
a¼1

ð qa
�s

a 	 sa|fflfflfflfflffl{zfflfflfflfflffl}
pure screw dislocation

þ qa
‘l

a 	 sa|fflfflfflfflffl{zfflfflfflfflffl}
pure edge dislocation

Þ; qa
‘ ¼ �sa � rca; qa

� ¼ la � rca: ð2:4Þ

Note that in each case the directional derivative that defines the density is in a direction perpendicular to the

line direction.

To verify (2.4), fix a, expand rca with respect to fsa; la;mag, and then compute rca 
ma; the result is

ðsa � rcaÞðsa 
maÞ þ ðla � rcaÞðla 
maÞ ¼ �ðsa � rcaÞla þ ðla � rcaÞsa:
Thus

ðrca 
maÞ 	 sa ¼ �ðsa � rcaÞla 	 sa þ ðla � rcaÞsa 	 sa

and (2.2) reduces to (2.4).

3. Principle of virtual power––macroscopic and microscopic force balances

We write

c ¼ ðc1; c2; . . . ; cAÞ
for the list of slips. The theory presented here is based on the belief that the power expended by each in-

dependent ‘‘rate-like’’ kinematical descriptor be expressible in terms of an associated force system con-

sistent with its own balance. But the basic ‘‘rate-like’’ descriptors, namely _uu, _EEe, and _cc are are not

independent, as they are constrained by

r _uu ¼ _EEe þ _WWe þ
XA
a¼1

_ccaðsa 	maÞ ð3:1Þ

(cf. (1.1), (1.2), (1.4)), and it is not apparent what forms the associated force balances should take. For that

reason, we determine these balances using the principal of virtual power.
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3.1. Principle of virtual power

With each evolution of the body we associate macroscopic and microscopic force systems. The mac-

roscopic system is defined by a traction tðnÞ (for each unit vector n), a field with a more or less standard
interpretation, and an external body force f presumed to account for inertia. The microscopic system, which

is nonstandard, is defined by: (i) a lattice stress T that expends power over the lattice strain-rate _EEe; (ii) an

internal microforce pa for each slip system a that expends power over the slip-rate _cca; (iii) a microstress na

that expends power over the slip-rate gradient r _cca; and (iv) a microtraction NaðnÞ that expends power over
_cca. Since _EEe is symmetric, we require that the lattice stress T be symmetric.

We characterize the force systems through the manner in which they expend power; that is, given any

subbody R, through the specification of: (i) PextðRÞ, the power expended on R by material external to R; and

(ii) PintðRÞ, a concomitant expenditure of power within R. Precisely,

PextðRÞ ¼
R
oR tðnÞ � _uudAþ

R
R f � _uudV þ

PA
a¼1

R
oR NaðnÞ _cca dA;

PintðRÞ ¼
R
R T � _EEe dV þ

PA
a¼1

R
Rðpa _cca þ na � r _ccaÞdV :

)
ð3:2Þ

Fix the time and consider the fields _uu, _EEe, and _cc as virtual velocities to be specified independently in a

manner consistent with (3.1); that is, denoting the virtual fields by ~uu, eEEe, and ~cc to distinguish them from

fields associated with the actual evolution of the body, we require that

r~uu ¼ eEEe þ fWWe þ
XA
a¼1

~ccaðsa 	maÞ ð3:3Þ

for some skew tensor field fWWe. Further, we define a generalized virtual velocity to be a list

V ¼ ð~uu; eEEe;~ccÞ
of such fields and write PextðR;VÞ and PintðR;VÞ for PextðRÞ and PintðRÞ when the actual fields _uu, _EEe, and _cc
are replaced by their virtual counterparts ~uu, eEEe, and ~cc.

We postulate a principle of virtual power requiring that, given any generalized virtual velocity V and any

subbody R, the corresponding internal and external virtual powers are balanced:

PextðR;VÞ ¼ PintðR;VÞ: ð3:4Þ

3.2. Macroscopic and microscopic force balance

We now deduce the consequences of this principle. In applying the power balance (3.4) we are at liberty

to choose any V consistent with the constraint (3.3).

3.2.1. Macroscopic force balances

Consider first a generalized virtual velocity without slip, so that ~cc 
 0, choose the virtual field ~uu arbi-

trarily, and let eEEe and fWWe denote the symmetric and skew parts of r~uu, so that

r~uu ¼ eEEe þ fWWe

and the constraint (3.3) is satisfied. Then, since T is symmetric, T � eEEe ¼ T � r~uu and the power balance (3.4)

takes the formZ
oR
tðnÞ � ~uudA ¼

Z
R
ðT � r~uu� f � ~uuÞdV :
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Equivalently,Z
oR
ðtðnÞ � TnÞ � ~uudA ¼ �

Z
R

~uu � ðdivTþ fÞdV ;

and since this relation must hold for all R and all ~uu, a standard argument leads to the traction condition

tðnÞ ¼ Tn and the classical local force balance

divTþ f ¼ 0: ð3:5Þ

3.2.2. Microscopic force balances

To discuss the microscopic counterparts of these results, we define the resolved shear sa through

sa ¼ sa � Tma: ð3:6Þ
Consider a generalized virtual velocity with ~uu 
 0, choose the virtual field ~cc arbitrarily, and let eEEe and fWWe

denote the symmetric and skew parts of the tensor field �
P

a ~cc
aðsa 	maÞ, so thatXA

a¼1

~ccaðsa 	maÞ ¼ �ðeEEe þ fWWeÞ:

Then, since T is symmetric, T � eEEe ¼ �
P

a sa~cca and the power balance (3.4) yields the microscopic virtual-

power relationXA
a¼1

Z
oR

NaðnÞ~cca dA ¼
XA
a¼1

Z
R
½ðpa � saÞ~cca þ na � r~cca�dV ð3:7Þ

to be satisfied for all ~cc and all R. Equivalently,XA
a¼1

Z
oR
ðNaðnÞ � na � nÞ~cca dA ¼ �

XA
a¼1

Z
R
ðdivna þ sa � paÞ~cca dV ;

and arguing as before this yields the microtraction conditions

NaðnÞ ¼ na � n ð3:8Þ
and the microforce balances

divna þ sa � pa ¼ 0 ð3:9Þ
on each slip system a.

4. Energy imbalance

We consider a purely mechanical theory based on a second law in which the temporal increase in free

energy of any subbody R is less than or equal to the power expended on R. Precisely, letting w denote the free

energy per unit volume, we take the second law in the form of an energy imbalance asserting that

_Z
R

w dV
Z
R

w dV 6PextðRÞ ð4:1Þ

for all subbodies R. In view of (3.2) and the identity PextðRÞ ¼ PintðRÞ, (4.1) has the alternative forms

_R
R w dV
R
R w dV 6

R
oR Tn � _uudAþ

R
R f � _uudV þ

PA
a¼1

R
oRðn

a � nÞ _cca dA;

_R
R w dV
R
R w dV 6

R
R T � _EEe dV þ

PA
a¼1

R
Rðpa _cca þ na � r _ccaÞdV :

9=; ð4:2Þ
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Since R is arbitrary, (4.2)2 yields the free-energy inequality

_ww � T � _EEe �
XA
a¼1

ðna � r _cca þ pa _ccaÞ6 0: ð4:3Þ

We use this inequality as a guide in developing a suitable constitutive theory.

5. Constitutive theory––thermodynamic restrictions

Our goal is a theory that allows for constitutive dependences on G, but that does not otherwise depart

drastically from the classical theory. Toward this end, we begin with a constitutive equation for the free

energy in which the classical elastic strain-energy is augmented by a defect energy WðGÞ:
w ¼ 1

2
Ee � C½Ee� þ WðGÞ: ð5:1Þ

Central to the theory is the thermodynamic defect stress defined by

T ¼ oWðGÞ
oG

: ð5:2Þ

Let G ¼ GðtÞ. Then, by (2.2),

_WðGÞWðGÞ ¼ T � _GG ¼
XA
a¼1

ðr _cca 
maÞ � Tsa ¼
XA
a¼1

ðma 
 TsaÞ � r _cca; ð5:3Þ

showing that the normal slip-gradients ma � rca do not affect temporal changes in the defect energy. Next,

by (5.1) and (5.3),

_ww ¼ C½Ee� � _EEe þ
XA
a¼1

ðma 
 TsaÞ � r _cca; ð5:4Þ

and the free-energy inequality (4.3) takes the form

ðT� C½Ee�Þ � _EEe þ
XA
a¼1

½pa _cca þ ðna �ma 
 TsaÞ � r _cca�P 0: ð5:5Þ

The left side of this inequality represents the dissipation, per unit volume. Consider constitutive equations

giving T, pa, and na as functions of Ee, G, and the list _cc ¼ ð _cc1; _cc2; . . . ; _ccAÞ of slip-rates. We require that the

inequality (5.5) hold for all choices of _EEe, _cc, and r _cc; the linearity of this inequality in _EEe and r _cc then

reduces the constitutive equation for T to the classical form

T ¼ C½Ee� ð5:6Þ
and––what is more important––requires that

na ¼ ma 
 Tsa: ð5:7Þ

Thus (5.5) reduces to
P

a pa _cca P 0. Guided by this inequality and the classical relation (1.5), we posit a

constitutive relation for pa in the form

pa ¼ raf ð _ccaÞ; ð5:8Þ
where, for each fixed a,

f ð _ccaÞ ¼ �f ð� _ccaÞ; f ð _ccaÞ _cca P 0; ð5:9Þ
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and where the slip resistances ra are consistent with the hardening equations

_rra ¼
XA
b¼1

kabðr1; r2; . . . ; rAÞj _ccbj; raðx; 0Þ ¼ ra
0 > 0 ð5:10Þ

(with hardening moduli kab possibly dependent also on G). The constitutive relations (5.1), (5.7) and (5.8)

then satisfy the free-energy inequality. Note that the microstress na is parallel to the ath slip plane, and that

pa is dissipative, while na is energetic.

Note that the constitutive theory is completely specified by the elasticity tensor C, the defect energy W,

the viscosity function f , and the hardening moduli kab; and that the dissipation is given by
P

a raf ð _ccaÞ _cca.

6. Viscoplastic yield conditions

The microforce balance divna þ sa � pa ¼ 0 augmented by the constitutive equations for pa and na plays
the role of a viscoplastic yield condition

sa � ð�1Þdivðma 
 TsaÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
backstress due to energy stored in dislocations

¼ raf ð _ccaÞ|fflfflfflffl{zfflfflfflffl}
dissipative hardening due to slip

ð6:1Þ

for each slip system a. Since T ¼ TðGÞ, the backstress depends on G and rG, and hence on the first and

second gradients rcb and rrcb, b ¼ 1; 2; . . . ;A, thereby rendering the yield condition strongly nonlocal.

The yield condition (6.1) embodies two different hardening mechanisms: that provided by the hardening

equations (5.10) and that which results, via the backstress, from an energetic dependence on G. Hardening
imposed by the hardening equation is strictly dissipative. This hardening has a purely phenomenological

nature; the only restriction placed by the basic theoretical framework is that the slip resistances ra be

nonnegative. Moreover, the resulting hardening provides no contribution to a backstress. On the other hand,

the hardening resulting from the backstress is strictly energetic. This hardening is a consequence of the

microforce balance and the restrictions imposed by the thermodynamical framework. 9 It is important to

bear in mind that the hardening equations allow for latent hardening via the moduli kab, a 6¼ b. In contrast,

hardening arising from the backstress would not directly induce latent hardening; indeed, simple shear is

compatible and hence has G 
 0, but would generally involve multiple slip and hence latent hardening via
(5.10).

Rate-independent yield conditions may be obtained from (6.1) with f of the classical form (1.10) by

formally passing to the limit as d ! 0þ. The result, for each slip system, is as follows (cf. Gurtin, 2000):

when the left side of (6.1) lies within the elastic range the slip on a vanishes,

�ra < sa þ divðma 
 TsaÞ < ra; _cca ¼ 0; ð6:2Þ

on the other hand, slip of the right sign is possible when the left side of (6.1) reaches either of the two yield

limits,

9 Cf. the discrete-dislocation computations of Cleveringa et al. (1999), which display large backstresses. These computations are

based on plane strain with simple-shear boundary loading, with the specimen a composite consisting of elastic particles within a single-

crystal matrix whose only active slip system is parallel to the direction of shear. Computational results of Bittencourt et al. (submitted

for publication) comparing the nonlocal theory presented here to the discrete-dislocation theory at micron length scales show

qualitative agreement with respect to the backstress. A second set of comparisons, again based on plane strain and simple-shear

loading, performed on a pure specimen with two active symmetrically placed slip systems, demonstrate that both hardening

mechanisms play essential roles in the emergence of a boundary layer and in the effect of specimen size.
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sa þ divðma 
 TsaÞ ¼ þra; _cca P 0;
sa þ divðma 
 TsaÞ ¼ �ra; _cca

6 0:

)
: ð6:3Þ

For the special case of a quadratic, isotropic defect energy

WðGÞ ¼ 1
2
ðc1jGj2 þ c2jtrGj2 þ c3j12ðG�GTÞj2Þ; ð6:4Þ

with c1, c2, and c3 constant, the defect stress has the form

T ¼ c1Gþ c2ðtrGÞ1þ c3ðG�GTÞ ¼ ðc1 þ c3ÞGþ c2ðtrGÞ1� c3G
T;

or equivalently, by (2.2),

T ¼
XA
b¼1

ððc1 þ c3Þðrcb 
mbÞ 	 sb þ c2ðrcb � lbÞ1� c3s
b 	 ðrcb 
mbÞÞ:

Thus, since na ¼ ma 
 Tsa,

na ¼
XA
b¼1

ððc1 þ c3Þðsa � sbÞma 
 ðrcb 
mbÞ þ c2ðrcb � lbÞla � c3ðma 
 sbÞrcb � ðmb 
 saÞÞ;

and, since ma 
 ðrcb 
mbÞ ¼ ½ðma �mbÞ1�mb 	ma�rcb, if we define (constant) tensors

Mab ¼ ðc1 þ c3Þðsa � sbÞ½ðma �mbÞ1�mb 	ma� þ c2ðla 	 lbÞ � c3ðma 
 sbÞ 	 ðmb 
 saÞ; ð6:5Þ
then the microstress becomes

na ¼
XA
b¼1

Mabrcb; ð6:6Þ

and the yield condition has the explicit form

sa þ
XA
b¼1

Mab � rrcb ¼ raf ð _ccaÞ: ð6:7Þ

While the tensors Mab have a complicated form, they are constant and, given the constants c1, c2, and c3,

may be computed for any prescribed single crystal. Finally, the basic equations of the theory consist of:

ii(i) the kinematical equations (1.1)–(1.4) and (2.2);

i(ii) the macroscopic balance (3.5) supplemented by the stress–strain relation (5.6);

(iii) the yield conditions (6.1) (general theory) or (6.7) (quadratic, isotropic defect energy) supplemented by

the hardening equations (5.10).

7. The microstress na as a continuous distribution of Peach–Koehler forces

The present theory is viscoplastic with dislocations distributed continuously throughout the body via a

tensor field G. Even so, because there is a natural decomposition of G into continuous distributions of

screw and edge dislocations, one might expect there to be a counterpart of the Peach–Koehler force within

the present theory. For a distribution of pure dislocations evolving on the ath slip plane, such a distributed

Peach–Koehler force should be parallel to the ath slip plane and perpendicular to the line direction; such a
force should therefore have the form ua

‘ðma 
 laÞ for edge dislocations on a and ua
�ðma 
 saÞ for screw

dislocations on a, where the u�s are scalar fields that represent associated force densities. Further, in the
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spirit of the classical Peach–Koehler force, these force densities should be energetic in nature. We now give

an argument of Gurtin (2002, Section 8.1), showing that if we account for specific dislocations through the

decomposition (2.4), then the microstress is a sum of such continuously distributed Peach–Koehler forces.

To begin with, note that

_WðGÞWðGÞ ¼ T �
XA
a¼1

ð _qqa
�s

a 	 sa þ _qqa
‘l

a 	 saÞ ¼
XA
a¼1

ðta� _qqa
� þ ta‘ _qq

a
‘Þ;

with

ta� ¼ sa � Tsa; ta‘ ¼ la � Tsa: ð7:1Þ

The fields ta� and ta‘ therefore represent work-conjugate scalar microforces for densities of screw and edge

dislocations on the slip system a. These fields therefore represent viable candidates for the force densities

associated with such screw and edge dislocations.

Next, fix a and expand T with respect to the basis fsa; la;mag. Then

T ¼ ta�s
a 	 sa þ ta‘l

a 	 sa þK;

with K a sum of tensor products of the form ma 	 ð. . .Þ, ð. . .Þ 	ma, and ð. . .Þ 	 la, so that ma 
Ksa ¼ 0.

Thus, since la ¼ ma 
 sa, we may use (5.7) to conclude that

na ¼ ta�ðma 
 saÞ þ ta‘ðma 
 laÞ: ð7:2Þ

Thus the microstress is governed solely by the resolved values ta� and ta‘ of the defect stress on the canonical

dislocation dyads for a. What is more important, the microscopic forces that comprise (7.2) are of the

requisite form and hence have the physical interpretations:

ta�ðma 
 saÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
distributed Peach–Koehler force on screw dislocations

and ta‘ðma 
 laÞ:|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
distributed Peach–Koehler force on edge dislocations

Based on this argument, we view na as a net distributed Peach–Koehler force for the slip-system a.
Finally, note for future use that (7.2) may be written more simply as

na ¼ ta�l
a � ta‘s

a:

8. Microscopically simple boundary conditions

The presence of microstresses results in an expenditure of power
R
oBðn

a � nÞ _cca dA by the material in

contact with the body, and this necessitates a consideration of boundary conditions on oB involving the

microtractions na � n and the slip-rates _cca, where n denotes the outward unit normal to oB. We discuss now a

simple class of boundary conditions for these fields on a prescribed subsurface S of oB. These boundary

conditions result in a null expenditure of micropower in the sense that ðna � nÞ _cca ¼ 0 on S for all a.
The boundary is microfree on S if

na � n ¼ 0 on S; a ¼ 1; 2; . . . ;A: ð8:1Þ
This boundary condition would seem consistent with the macroscopic boundary condition Tn ¼ 0 on S. By

(5.7), na is parallel to the ath slip plane, Thus, if the boundary is microfree, then, for each a, na (and hence

the net Peach–Koehler force on GNDs on a) must be tangent to the line of intersection of the ath slip plane

with S. (Other consequences of the microfree conditions are given by Gurtin (2002).)

One might consider the microclamped conditions

ca ¼ 0 on S; a ¼ 1; 2; . . . ;A ð8:2Þ
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in conjunction with a boundary surface S that is macroscopically clamped in the sense that u ¼ 0 on S.
Consider a microclamped surface. Then, by (8.2), the tangential derivative of ca must vanish on S for each

a, so that

rca ¼ oca

on
n ðyÞ

and, by (2.2),

G ¼
XA
a¼1

oca

on
ðn
maÞ 	 sa on S:

G on S may therefore be considered as the sum over a of mixed dislocations with Burgers direction parallel

to sa and line direction tangent to the intersection of S with the ath slip plane, and with density jn
maj oca

on
.

Moreover, GTn ¼ 0 on S; hence the net Burgers vector associated with small loops on S vanishes. Note

also that, by (y),

qa
‘ ¼ �ðsa � nÞ oc

a

on
and qa

� ¼ ðla � nÞ oc
a

on
on S; ð8:3Þ

thus

qa
�

qa
‘
¼ � la � n

sa � n ;

which is the assertion that the screw and edge densities for a be in inverse ratio to the projections of their

line directions on n. Therefore, qa
� ¼ 0 or sa � n ¼ 0 if and only if qa

‘ ¼ 0 or la � n ¼ 0.

9. Two-dimensional theory

9.1. Strict plane strain

Under plane strain the displacement has the component form

uiðx1; x2; tÞ ði ¼ 1; 2Þ; u3 ¼ 0;

and results in a displacement gradient ru that is independent of x3, so that

ðruÞj3 ¼ ðruÞ3j ¼ 0 ðj ¼ 1; 2; 3Þ; ð9:1Þ

i.e.,

ðruÞe ¼ ðruÞTe ¼ 0; with e 
 e3; ð9:2Þ

the out-of-plane normal.
When discussing plane deformations we restrict attention to planar slip systems; that is, slip systems a

that satisfy

sa � e ¼ 0; ma � e ¼ 0; sa 
ma ¼ e; ð9:3Þ

with slips ca independent of x3; all other slip systems are ignored. The assumption of planar slip systems
yields restrictions on the components of Hp and (hence) He, Ee, and We strictly analogous to those of ru as

specified in (9.1) and (9.2). There is a large literature based on this approximative hypothesis. The resulting
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fully two-dimensional kinematics, which we refer to as strict plane strain, is important in constructing

simple mathematical models, often based on two slip systems. 10

In strict plane strain the lattice rotation We has the form

We ¼ #ðe
Þ;
where #ðx1; x2; tÞ, the lattice-rotation angle, measures local rotations of the lattice. Then He ¼ Ee þ #ðe
Þ
and, since curlð#ðe
ÞÞ ¼ �e	r#, we may use (2.1) to conclude that

G ¼ e	r#� curlEe: ð9:4Þ

9.2. Burgers vector g

The following notation for first and second slip-directional derivatives of a scalar field U and a vector field

v is convenient:

U;b ¼ sb � rU; U;ab ¼ sa � ðrrUÞsb; v;b ¼ ðrvÞsb: ð9:5Þ
Then, since e � rca ¼ 0, it follows that rca 
ma ¼ ðsa � rcaÞðsa 
maÞ ¼ ca;a e; so that, by (2.2),

G ¼ e	 g; g ¼
XA
a¼1

ca;a s
a: ð9:6Þ

Thus, since each slip direction sa is orthogonal to e,

g ? e:

Further, because g ¼ GTe, g represents the Burgers vector (per unit area) for small loops on the cross-

sectional plane (the plane with unit normal e). Moreover, (9.6) shows G to have the form of a single edge

dislocation with line direction e and Burgers vector g.

9.3. Constitutive theory––yield conditions

In view of (9.6), we can write the free energy in the form

w ¼ 1
2
Ee � C½Ee� þ WðgÞ; ð9:7Þ

so that, by (9.6),

_ww ¼ C½Ee� � _EEe þ
XA
a¼1

ðsa � tÞ _cca;a ;

with

t ¼ oWðgÞ
og

:

The free-energy inequality (4.3) therefore takes the form

ðT� C½Ee�Þ � _EEe þ
XA
a¼1

½pa _cca þ ðna � ðsa � tÞsaÞ � r _cca�P 0;

10 Cf. e.g., Asaro (1983a,b, pp. 45–46, 84–97 and the references therein).
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and arguing as in Section 5, we are led to the relations

na ¼ ðsa � tÞsa; ð9:8Þ

pa ¼ f ð _ccaÞ, and T ¼ C½Ee�. Thus, since divna ¼ sa � rðsa � tÞ ¼ sa � t;a ; the yield conditions take the form

sa þ sa � t;a ¼ raf ð _ccaÞ:

For the quadratic, isotropic defect energy

WðgÞ ¼ 1
2
cjgj2; ð9:9Þ

with c constant,

t ¼ cg

and

na ¼ cðsa � gÞsa: ð9:10Þ

On the other hand, by (9.6),

g � sa ¼
XA
b¼1

Sabcb;b ;

where Sab are the slip-interaction coefficients

Sab ¼ sa � sb:

Thus

na ¼ c
XA
b¼1

Sabcb;b

" #
sa ð9:11Þ

and the yield conditions become (cf. (9.5)2)

sa þ c
XA
b¼1

Sabcb;ba ¼ raf ð _ccaÞ: ð9:12Þ

By (9.4) and (9.6),

g ¼ r#� ðcurlEeÞTe: ð9:13Þ

Thus, when lattice-strain gradients are negligible,

g � r#:

Granted this approximation and its second-order counterpart, we have the following approximate forms
for the microstresses and yield conditions:

na � c#;as
a; sa þ c#;aa � raf ð _ccaÞ:

In this approximation, na is linear in #;a, which is the curvature of the deformed ath slip line, 11 and the

nonlocal term #;aa in the yield condition, which characterizes the backstress, represents the change of this

curvature in the direction of slip on a.

11 At least to within the approximations inherent in the underlying hypothesis of small deformations.
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10. Grain boundaries

In this section we develop kinematical and mechanical transmission conditions across a boundary be-

tween crystalline grains.

10.1. Kinematics

We assume that the bulk material within each grain is consistent with the theory developed in the

preceding sections. We write R (defined uniquely up to a symmetry transformation of the crystal) for the

prescribed orthogonal tensor that defines the relative misorientation of grain 2 relative to grain 1, before

deformation. We assume that the slip systems of the individual grains are labelled in a manner consistent

with this misorientation, so that, labelling the grains i ¼ 1; 2 and writing sai and ma
i for the slip directions

and slip-plane normals for grain i,

sa2 ¼ Rsa1 and ma
2 ¼ Rma

1 ð10:1Þ

for each slip system a.
Let S denote the smooth surface that represents the grain boundary, and let nS denote the the unit

normal to S, directed outward from grain 1. We assume that the bulk fields are smooth away from S and up

to S from each grain; given any bulk field u, we write u1 for the limit of u at S from grain 1, u2 for the limit

of u from grain 2, and sut ¼ u2 � u1 for the jump of u across S. Then, by (1.4) and (10.1),

sHpt ¼
XA
a¼1

scasa 	mat ¼
XA
a¼1

ca
2s

a
2 	ma

2 �
XA
a¼1

ca
1s

a
1 	ma

1: ð10:2Þ

To exclude cavitation at the grain boundary we require that the normal component of the displacement u

be continuous across S:

sut � nS ¼ 0: ð10:3Þ

The jump sut, which is tangential to S, represents grain-boundary slip.

10.2. Force balances at the grain boundary

Let R be an arbitrary subregion of the body and assume that

SR ¼ S \ R;

the portion SR of S in R, is a smooth subsurface. Let u denote a bulk field, so that u may suffer a jump

discontinuity across S. Then integrals such as
R
R rudV ,

R
R _uudV , and

R
oR _uudA are treated as ordinary in-

tegrals with piecewise continuous integrands; e.g., the first integral is given as the integrals of ru over the

portion of R in grain 1 plus the integral over the portion of R in grain 2.

We neglect surface stresses within S that act on SR along its boundary curve oSR. The external power

expenditure for R is thus, as before, given by (3.2)1, so that, since tðnÞ ¼ Tn,

PextðRÞ ¼
Z
oR
Tn � _uudAþ

Z
R
f � _uudV þ

XA
a¼1

Z
oR
ðna � nÞ _cca dA: ð10:4Þ

The internal power consists of the bulk portion (3.2)2 augmented by the contribution due to the presence
of the grain boundary. The basic kinematic quantities that act internally to SR are the slip-velocity s _uut and

the limiting slip rates _cca
1 and _cca

2; to accomodate these we introduce a macroscopic internal force s conjugate
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to s _uut and microscopic internal forces Pa
1 and Pa

2 conjugate to _cca
1 and _cca

2. We therefore write the internal

power in the form

PintðRÞ ¼
Z
R
T � _EEe dV þ

XA
a¼1

Z
R
ðpa _cca þ na � r _ccaÞdV þ

Z
SR

s � s _uutdAþ
XA
a¼1

Z
SR

ðPa
1 _cc

a
1 þ Pa

2 _cc
a
2ÞdA:

ð10:5Þ

Consistent with the constraint nS � s _uut ¼ 0, we require that s be tangential:

s � nS ¼ 0:

We define virtual velocities as in Section 3.1, except we now add the grain-boundary constraint

nS � s~uut ¼ 0. Then, as before, the principle of virtual power requires that PextðR;VÞ ¼ PintðR;VÞ for all R
and all virtual velocity fields V. We decouple the grain boundary from the bulk material by choosing an

arbitrary subsurface P of S and a subregion R such that SR ¼ P , and then shrinking R smoothly down to P .

In this process the limiting values of the integrals over R vanish, since the volume of R vanishes, whileZ
oR
Tn � ~uudA !

Z
P
sTnS � ~uutdA;

Z
oR
ðna � nÞ~cca dA !

Z
P
sðna � nSÞ~ccatdA;

and we are therefore led to a virtual power principle for a ‘‘pillbox’’ P of infinitesimal thickness:Z
P
sTnS � ~uutdAþ

XA
a¼1

Z
P
sðna � nSÞ~ccatdA ¼

Z
P

s � s~uutdAþ
XA
a¼1

Z
P
ðPa

1~cc
a
1 þ Pa

2~cc
a
2ÞdA; ð10:6Þ

since P is arbitrary,

sTnS � ~uutþ
XA
a¼1

sðna � nSÞ~ccat ¼ s � s~uutþ
XA
a¼1

ðPa
1~cc

a
1 þ Pa

2~cc
a
2Þ; ð10:7Þ

a relation that must hold for all fields ~cca
1, ~cc

a
2, ~uu1, and ~uu2 on S consistent with the constraint ~uu1 � nS ¼ ~uu2 � nS.

Assume first that the ~cca�s vanish identically. The choice ~uu1 ¼ ~uu2 then yields the classical balance

sTtnS ¼ 0; ð10:8Þ

and we may use the abbreviation

TnS ¼ T1nS ¼ T2nS : ð10:9Þ

On the other hand, the choice ~uu1 ¼ 0 yields ðTnS � sÞ � ~uu2 ¼ 0 for all ~uu2 tangent to S; since s is tangential,

this implies that ðTnSÞtan ¼ s. (Here atan denotes the tangential component of a vector a; i.e., atan ¼
a� ða � nSÞnS .) Thus and by (10.8),

ðTnSÞtan ¼ s: ð10:10Þ

Finally, if we choose ~uu 
 0 in (10.7) and use the fact that for each a, ~cca
1 and ~cca

2 are each arbitrary, we are led
to microforce balances for the grain boundary: for each slip system a,

na
1 � nS ¼ �Pa

1; na
2 � nS ¼ Pa

2: ð10:11Þ

10.3. Energy imbalance

Neglecting grain-boundary energy, the inequality (4.1) remains the appropriate form of the second law

in all motions of the body. Moreover, since S is time-independent,
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_Z
R

w dV
Z
R

w dV ¼
Z
R

_wwdV : ð10:12Þ

As before, we shrink R to an arbitrary subsurface P of S. Then (10.12) vanishes and, since PextðRÞ ¼ PintðRÞ
with PintðRÞ given by (10.5), and since P is arbitrary, we are led to the dissipation inequality

s � s _uutþ
XA
a¼1

ðPa
1 _cc

a
1 þ Pa

2 _cc
a
2ÞP 0: ð10:13Þ

We close the theory by specifying constitutive equations for the internal microforces Pa
1 and Pa

2 and the

grain-boundary shear stress s.

10.4. Constitutive relations

With a view toward specifying orientational variables appropriate to constitutive equations for the grain

boundary, consider a fixed reference lattice and let R1 and R2 denote the orthogonal tensors that define the

relative orientations of grains 1 and 2 relative to this fixed lattice. Further, let �ssa and �mma denote the slip

direction and slip plane normal for a measured in the reference lattice and define the slip-orientation pair Oa
1

by

Oa
1 ¼ ðjRT

1 nS � �ssaj; jRT
1 nS � �mmajÞ: ð10:14Þ

Appropriate variables for grain 1 would then seem to be the normal RT
1 nS to the grain-boundary in the

reference lattice measured with respect to grain 1, the misorientation R2R
T
1 relative to grain 1, and the slip-

orientation pair Oa
1:

ðR2R
T
1 ;R

T
1 nS ;O

a
1Þ:

Similarly, reversing the roles of the two grains in (10.14), the appropriate variables for grain 2 would be

ðR1R
T
2 ;R

T
2 nS ;O

a
2Þ;

with Oa
2 the natural counterpart of (10.14) for grain 2. If we identify the reference lattice with the lattice as

oriented in grain 1, then R1 ¼ 1, R ¼ R2, s
a
1 ¼ �ssa, ma

1 ¼ �mma, sa2 ¼ R�ssa, ma
2 ¼ R�mma,

Oa
1 ¼ ðjnS � sa1j; jnS �ma

1jÞ; Oa
2 ¼ ðjnS � sa2j; jnS �ma

2jÞ;

and the appropriate orientational variables for grains 1 and 2, respectively, become

ðR; nS ;Oa
1Þ and ðRT;RTnS ;Oa

2Þ:

Guided by the foregoing discussion, the bulk constitutive equations (5.8), and the dissipation inequality
(10.13), we assume that there is a constitutive function U > 0 and a scalar d > 0 such that

Pa
1 ¼ fa

1j _cca
1j

d
sgn _cca

1; fa
1 ¼ jUðR; nS ;Oa

1Þ;
Pa

2 ¼ fa
2j _cca

2j
d
sgn _cca

2; fa
2 ¼ jUðRT;RTnS ;Oa

2Þ;

)
ð10:15Þ

where j > 0, defined by

_jj ¼ �hðjÞ
XA
b¼1

ðj _ccb
1 j þ j _ccb

2 jÞ; jðx; 0Þ ¼ 1 ð10:16Þ

represents softening (or hardening) due to slip accumulated at the grain boundary. (We would expect

softening, since the continued accumulation of slip should induce disorder in the grain boundary.)
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We assume that the shear stress s is a function of the grain-boundary slip-rate

d ¼ s _uut:

We consider a simple constitutive relation for s of a form similar to that assumed for Pa
i , in which the role

of sgn _cca
1 is replaced by the grain-boundary slip-direction d=jdj. Precisely, we assume that

s ¼ juðnS ;RÞjdjd
d

jdj ; ð10:17Þ

with u > 0, so that, by (10.16), the accumulation of bulk slip at the grain boundary induces softening in the

relation between s and d.

It is clear that the constitutive relations developed above are consistent with the dissipation inequality

(10.13).

10.5. Viscoplastic yield conditions for the grain-boundary

The force balances (10.10) and (10.11) supplemented by the constitutive relations (10.15) and (10.17)

play the role of viscoplastic yield conditions for the grain boundary. These consist of the microtraction
conditions

�na
1 � nS ¼ fa

1j _cca
1j

d
sgn _cca

1; fa
1 ¼ jUðR; nS ;Oa

1Þ;
na

2 � nS ¼ fa
2j _cca

2j
d
sgn _cca

2; fa
2 ¼ jUðRT;RTnS;Oa

2; Þ

)
ð10:18Þ

for each slip system a, where j satisfies (10.16), together with a condition

ðTnSÞtan ¼ juðnS;RÞjdjd
d

jdj ð10:19Þ

for the macroscopic shear stress.

Note that UðR; nS ;Oa
1Þ, UðRT;RTnS ;Oa

2Þ, and uðnS ;RÞ are prescribed once and for all, given the mis-

orientation, the grain-boundary normal, and the Schmid tensors for the individual slip systems. Moreover,

these moduli are independent of time and dependent on x only when the grain boundary is nonplanar.

In most cases of interest the rate dependence is small. In fact, the rate-independent theory offers insight
into the implications of the grain boundary conditions. The rate independent limit of (10.18) is obtained by

formally passing to the limit as d ! 0þ. The result for grain i and slip system a may be stated as follows:

when the microtraction lies within the yield range the slip on a at the grain-boundary vanishes,

�fa
i < ð�1Þina

i � nS < fa
i ; _cca

i ¼ 0; ð10:20Þ

on the other hand, when the microtraction reaches either of the two yield limits, then slip of the right sign is

possible,

ð�1Þina
i � nS ¼ þfa

i ; _cca
i P 0;

ð�1Þina
i � nS ¼ �fa

i ; _cca
i 6 0:

)
ð10:21Þ

Thus, in contrast to the bulk yield conditions (6.2) and (6.3), the condition (10.20) and (10.21) mark a

transition in boundary conditions from the kinematic condition _cca
i ¼ 0 (cf. (8.2)) to a microtraction con-

dition prescribing na
i � nS . Further, grain boundary flow requires a content of GNDs sufficient to drive the

microtraction to its yield value, and for that reason would generally occur sometime after yield has occured

within the adjacent bulk material. The rate-independent limit of (10.19) has a strictly analogous form and
marks a change in boundary condition from null macroscopic slip to a condition on the common value of

the macroscopic shear stress.
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11. Strict plane strain

11.1. General remarks

Next, by (9.10), the microstress conditions (10.18) at the grain boundary take the form

cðsa1 � gÞsa1 � nS ¼ �fa
1j _cca

1j
d
sgn _cca

1; cðsa2 � gÞsa2 � nS ¼ fa
2j _cca

2j
d
sgn _cca

2; ð11:1Þ

a ¼ 1; . . . ;A, relations that may also be written in terms of the slip gradients using (9.11). The result (11.1)

has an interesting consequence that is most easily discussed within a rate independent setting (d ¼ 0). The

grain-boundary conditions then require that for, say slip system a in grain 1, �cðsa1 � gÞsa1 � nS lie between

�fa
1, with flow possible at the grain boundary on a only when one of the values �fa

1 is attained. Thus (11.1)
implies that

sai � gi ¼ �ffa
i ;

�ffa
i ¼ ð�1Þi fa

i sgn _cca
i

cðsai � nSÞ

for each grain i and each active slip system a for grain i that is nontangent in the sense that sai � nS 6¼ 0. Then,

neglecting softening as described by (10.16), �ffa
i is independent of time and, if the interface is planar, also

independent of x. In any event, if there are at least two active nontangent slip systems for grain i, then gi is

temporally constant:

_ggi ¼ 0: ð11:2Þ

The foregoing conditions have interesting and important consequences. Consider a body under

monotone increasing loading, and neglect grain boundary softening or hardening (j 
 1Þ.
(a) In the initial stages following the onset of plastic flow, the Burgers vector g in each grain should be

small and hence the microtraction conditions (10.20) would imply that _cca
i ¼ 0 for both grains and all slip

systems. Thus in this initial stage the grain boundary acts as a barrier for plastic slip. Moreover, the

constraints _cca
i ¼ 0 should induce increasing slip gradients on each of the slip systems near S and this in turn

should result in an increase in the magnitude of g at S in each of the grains. This effect should be local and

not apparent away from the grain boundary, where the accumulation of GNDs would be of lesser mag-

nitude. Thus we would expect jgj to exhibit a sharp peak during the initial stages of the loading.

(b) As the loading increases the Burgers vector g should increase in magnitude until for some grain i and
nontangent slip system a, sai � gi reaches the threshold value �ffa

i . At this point, although the loading continues

to increase, sai � gi can no longer increase. Further, if on a second nontangent slip system b in grain i, sbi � gi
reaches its threshold value, and if both sai � gi and sbi � gi remain at their threshold values, as would be ex-

pected, then gi itself cannot thereafter vary with time.

The behavior specified in (a) and (b), which is a consequence of the microtraction conditions at the grain

boundary seems consistent with the experiments of Sun et al. (1998, 2000).

Finally, if the material is mildly rate dependent, then one would expect the behaviour described in (a)

and (b), at least qualitatively.

11.2. An explicit solution: accumulation of GNDs at the grain boundary

We now describe an example, within the context of strict plane strain, for which an explicit analytical

solution can be found. As we shall see, the qualitative behavior of this solution is consistent with the

discussion in (a) and (b) above.
This solution involves a semi-infinite compressed specimen that abuts a rigid material and has two active

slip systems symmetrically oriented with respect to the axis of compression. The solution, which is exact,
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may be viewed as an approximation to a situation involving a grain boundary between a grain with slip

systems aligned for easy flow and a grain whose slip system alignment severely inhibits flow (Fig. 1).

Precisely, we consider a single-crystal occupying the half-plane fðx1; x2Þ : x1 > 0g, with grain boundary

the line x1 ¼ 0. Since the adjacent crystal, say crystal 2, is viewed as rigid, we may restrict attention to grain

1 and, without danger of confusion, omit the subscript 1 when it labels that grain. We assume that only two

slip systems are active and that the x1-axis is an axis of symmetry of the crystal; we therefore let

s1 ¼ cos h
2
e1 � sin h

2
e2; m1 ¼ sin h

2
e1 þ cos h

2
e2;

s2 ¼ cos h
2
e1 þ sin h

2
e2; m2 ¼ � sin h

2
e1 þ cos h

2
e2;

ð11:3Þ

with h a fixed angle and e1 and e2 the unit vectors that mark the x1 and x2 axes.
We restrict attention to a simplified situation in which all fields are independent of x2, and write x for x1.

The basic unknowns of the problem are the displacement u and the slips ca, and we assume that the dis-

placement is horizontal and the slip is symmetric with respect to the x-axis, i.e.,

u ¼ ue1; c1 ¼ �c2 ¼: c: ð11:4Þ
For simplicity, we restrict attention to the rate-independent theory, but allow for bulk hardening and

grain-boundary softening. We assume that the bulk hardening matrix kab in (5.10) is constant and sym-

metric with k11 ¼ k22. Thus r1 ¼ r2 ¼: r satisfies

_rr ¼ kj _ccj; rðx; 0Þ ¼ r0 > 0; ð11:5Þ
with k ¼ k11 þ k12 ¼ k12 þ k22 > 0.

By symmetry and since the grain boundary is flat, UðR; nS;Oa
1Þ is constant and independent of a. We

assume that the function h that characterizes grain-boundary softening is strictly positive and constant.

Thus, by (10.15) and (10.16), the slip resistances f1 ¼ f2 ¼: f for the grain boundary evolve according to

_ff ¼ �hj _ccj; �ff0 < f < f0 ¼ fð0Þ;
0; f ¼ �ff0;

�
ð11:6Þ

with f0 ¼ U, �ff0 and h positive constants. The truncation of (11.6) at �ff0 means that the grain boundary

cannot soften indefinitely.

We look for solutions of the equilibrium equation divT ¼ 0 (cf. (3.5)) supplemented by the rate-inde-

pendent yield conditions (6.2) and (6.3). Regarding the boundary conditions, we assume that a compressive

load is applied at x ¼ 1, i.e.,

Te1 ! �pe1 as x ! 1; ð11:7Þ

Fig. 1. Simplified model of a grain boundary between a grain with slip systems aligned for easy flow and a grain whose slip system

alignment severely inhibits flow.
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where the loading p ¼ pðtÞ > 0 is a positive, monotone increasing function of time. In conjunction with this

we assume that no microtraction acts on the crystal at infinity,

na � e1 ! 0 as x ! 1: ð11:8Þ
At the grain boundary x ¼ 0, we have the condition

uð0; tÞ ¼ 0 ð11:9Þ
as well as the rate-independent grain-boundary yield conditions (10.20) and (10.21).

In this simple setting, the displacement u and the slip c may be determined explicitly as functions of ðx; tÞ.
Since pðtÞ is invertible with respect to time, we shall write u and c as functions of x and the loading p. 12

We prefer to state the solution first and then give its derivation. Letting E denote Young�s modulus and m
Poisson�s ratio, and recalling that c and k are defined in (9.9) and (11.5), the parameters and functions

involved in the solution consist of:

(a) a boundary layer thickness

L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1 � m2Þ sin2 h

E sin2 h þ 2kð1 � m2Þ

s
> 0; ð11:10Þ

(b) pressures

p1 ¼
2ð1 � mÞ

ð1 � 2mÞ sin h
r0; p2 ¼

2ð1 � mÞ
ð1 � 2mÞ sin h

r0

�
þ f0

L

�
; and

p3 ¼
2ð1 � mÞ

ð1 � 2mÞ sin h
r0

"
þ f0

L
þ f0 � �ff0

L
c sin2 h
2hL

�
� 1

�#
; ð11:11Þ

(c) bulk and grain boundary forcing functions

rðpÞ ¼ L2ð1 � 2mÞ
cð1 � mÞ sin h

ðp � p1Þ and sðpÞ ¼ 2Lðf0 � hrðpÞÞ
c sin2 h � 2hL

: ð11:12Þ

(Note that sðp2Þ ¼ rðp2Þ and that rðpÞ is an increasing function of the loading, while sðpÞ is decreasing.)

Our solution may then be stated as follows:

i(i) For p < p1, the material behaves elastically, i.e., cðx; pÞ 
 0.
(ii) For p1 6 p < p2,

cðx; pÞ ¼ �rðpÞð1 � e�x=LÞ; ð11:13Þ
where rðpÞ, given by (11.12)1, is a linear increasing function of p. In this loading range, cð0; pÞ ¼ 0 and the

grain boundary is microclamped: p2 is in fact the threshold for the activation of slip at the grain boundary.

Moreover, the GND edge densities for the two available slip systems coincide, and writing

q‘ :¼ q1
‘ ¼ q2

‘;

we have

q‘ðx; pÞ ¼
rðpÞ sin h

L
e�x=L ð11:14Þ

12 Rather than of x and t. By rate independence, time only occurs as a parameter in the equations for u and c, so that it is meaningful

to choose the loading as the parameter controlling the evolution of the solution.
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(Fig. 2). Hence, GNDs accumulate in a boundary layer with characteristic length L at x ¼ 0. Further, in this

initial stage of plastic deformation the dislocation density at the grain boundary increases linearly with the
loading.

(iii) For p2 6 p < p3,

cðx; pÞ ¼ �rðpÞ þ sðpÞe�x=L; ð11:15Þ

so that, since cð0; pÞ 6¼ 0, grain boundary slip is activated. Moreover,

q‘ðx; pÞ ¼
sðpÞ sin h

L
e�x=L; ð11:16Þ

and, as in (ii), GNDs accumulate in a boundary layer with characteristic length L, but now, as a conse-

quence of softening at the grain boundary, the GND density at x ¼ 0 decreases as the loading increases.

(iv) For pP p3,

cðx; pÞ ¼ �rðpÞ þ sðp3Þe�x=L; ð11:17Þ

with sðp3Þ ¼ 2L�ff0=c sin2 h, and hence

q‘ðx; pÞ ¼
sðp3Þ sin h

L
e�x=L: ð11:18Þ

In this stage the grain boundary cannot soften further, and the GND density remains constant at the

boundary as the loading increases (Fig. 3).
Note that, defining the average accumulated slip in bulk as

cbulkðpÞ ¼ lim
R!1

1

R

Z R

0

cðx; pÞdx;

the identity

rðpÞ ¼ �cbulkðpÞ;

which follows from (11.13), (11.15) and (11.17), shows that the bulk forcing function measures the accu-

mulated slip in bulk. Analogously, the difference between the grain boundary and bulk forcing functions,

Fig. 2. Typical plot of dislocation density .‘ðx; pÞ as a function of x for p > p1.

Fig. 3. Variation of accumulated slip jcð0; pÞj and dislocation density .‘ð0; pÞ at the grain boundary as a function of the loading p.
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sðpÞ � rðpÞ ¼ cð0; pÞ; p > p2;

measures the slip accumulated at the interface.

To prove (i), (ii) and (iii), note first that, by (11.4), the displacement gradient and plastic strain tensor
have the form

ru ¼ ux 0

0 0

� �
; Hp ¼ c sin h 0

0 �c sin h

� �
; ð11:19Þ

so that, if the elasticity tensor is isotropic, the stress tensor T ¼ k trðEeÞIþ 2lEe is is given by

T ¼ ðk þ 2lÞux � 2lc sin h 0

0 kux þ 2lc sin h

� �
; ð11:20Þ

with k and l the Lam	ee moduli. Inserting this expression into the force balance divT ¼ 0, we obtain the

differential equation

ðk þ 2lÞuxx � 2lcx sin h ¼ 0; ð11:21Þ

with the boundary conditions (cf. (11.7))

u ¼ 0 at x ¼ 0;
ðk þ 2lÞux � 2lc sin h ! �p as x ! 1:

�
ð11:22Þ

By (11.21) and (11.22)2,

ux ¼
1

k þ 2l
ð2lc sin h � pÞ; ð11:23Þ

a relation that with (11.22)1 allows us to determine the displacement as a function of the slip c.
Consider now the generalized yield conditions (6.2) and (6.3). With the quadratic defect energy (9.9) we

have, by (9.6),

na ¼ cðg � saÞsa; g ¼ �cx sin he2; ð11:24Þ

and hence

divn1 ¼ �divn2 ¼ c
2

cxx sin
2 h:

From (3.6), (11.3) and (11.21), s1 ¼ �s2 ¼ l sin hðux � 2c sin hÞ, or equivalently, using (11.23),

s1 ¼ �s2 ¼ � l sin h
k þ 2l

2ðkð þ lÞc sin h þ pÞ:

Inserting these expressions into (6.2) and (6.3), we obtain the yield conditions

�r <
c
2

cxx sin
2 h � E sin2 h

2ð1 � m2Þ c � ð1 � 2mÞ sin h
2ð1 � mÞ p < r; _cc ¼ 0; ð11:25Þ

and

c
2

cxx sin
2 h � E sin2 h

2ð1 � m2Þ c � ð1 � 2mÞ sin h
2ð1 � mÞ p ¼ þr; _ccP 0;

c
2

cxx sin
2 h � E sin2 h

2ð1 � m2Þ c � ð1 � 2mÞ sin h
2ð1 � mÞ p ¼ �r; _cc6 0;

9>>>=>>>; ð11:26Þ

with E is Young�s modulus and m is Poisson�s ratio.
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Consider now a monotone increasing loading program p ¼ pðtÞ > 0, with pð0Þ ¼ 0 and cðx; 0Þ 
 0. Then

for some initial interval of time the elastic-range inequality (11.25) has the form

�r0 < �ð1 � 2mÞ sin h
2ð1 � mÞ p < r0; _cc ¼ 0;

the solution therefore remains elastic until p ¼ p1, which establishes (i).

When p ¼ p1 the lower yield condition in (11.25) is attained; thus for p > p1 the crystal will flow with
_cc6 0, so that

c6 0: ð11:27Þ
Thus the grain-boundary relations (10.20) and (10.21), for i ¼ 2, take the form

c
2

cxð0; pÞ sin2 h > �f; _ccð0; pÞ ¼ 0 ð11:28Þ

and

c
2

cxð0; pÞ sin2 h ¼ �f; _ccð0; pÞ6 0; ð11:29Þ

where f evolves according to the softening equation (11.6).

Next, integrating the hardening equation (11.5) we obtain

r ¼ �kc þ r0; ð11:30Þ
which, when inserted into (11.26), yields the ordinary differential equation

cxx �
1

L2
ðc þ rðpÞÞ ¼ 0: ð11:31Þ

The associated boundary condition at infinity follows from (11.8) and (11.24):

cx ! 0 as x ! 1: ð11:32Þ
Since cð0; pÞ ¼ 0 for p ¼ p1, we may conclude from (11.28) that cð0; pÞ ¼ 0 for p > p1 as long as the

inequality in (11.28) is satisfied. The solution of (11.31) subject to (11.32) and

cð0; pÞ ¼ 0 ð11:33Þ
is (11.13). By (11.28), the solution (11.13) will hold as long as

� crðpÞ sin2 h
2L

> �f0; ð11:34Þ

or equivalently, by (11.12)1, as long as p < p2 with p2 given by (11.11)2. To obtain (11.14), it is sufficient to

note that, by (2.4), the GND edge densities of the two slip systems coincide and are proportional to the slip

gradient:

q1
‘ ¼ q2

‘ ¼ �cx sin h: ð11:35Þ
When p > p2, slip is activated at the grain boundary, and _ccð0; pÞ is no longer required to vanish. The

basic equation (11.31) for slip in bulk remains unchanged, as well as the boundary conditions (11.32), but

(11.33) is now replaced by the grain boundary condition (11.29):

c
2

cxð0; pÞ sin2 h ¼ �f: ð11:36Þ

Integrating the softening equation (11.6) we obtain

f ¼ hc þ f0; ð11:37Þ
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which, when inserted into (11.36), yields

c
2

cxð0; pÞ sin2 h þ hcð0; pÞ þ f0 ¼ 0: ð11:38Þ

The solution of (11.31) subject to the boundary conditions (11.38) and (11.32) yields (11.15). Finally,

(11.16) follows from (11.35).

The boundary condition (11.38) holds as long as hcð0; pÞ þ f0 > �ff0. A straightforward computation
shows that �ff0 is reached at p ¼ p3, so that, for p > p3, the grain boundary condition (11.36) becomes

c
2

cxð0; pÞ sin2 h ¼ ��ff0; ð11:39Þ

which yields (11.17).
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