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Abstract

In this study we develop a gradient theory of small-deformation single-crystal plasticity that accounts for geomet-
rically necessary dislocations (GNDs). The resulting framework is used to discuss grain boundaries. The grains are
allowed to slip along the interface, but growth phenomenona and phase transitions are neglected. The bulk theory is
based on the introduction of a microforce balance for each slip system and includes a defect energy depending on a
suitable measure of GNDs. The microforce balances are shown to be equivalent to nonlocal yield conditions for the
individual slip systems, yield conditions that feature backstresses resulting from energy stored in dislocations. When
applied to a grain boundary the theory leads to concomitant yield conditions: relative slip of the grains is activated
when the shear stress reaches a suitable threshold; plastic slip in bulk at the grain boundary is activated only when the
local density of GNDs reaches an assigned threshold. Consequently, in the initial stages of plastic deformation the grain
boundary acts as a barrier to plastic slip, while in later stages the interface acts as a source or sink for dislocations. We
obtain an exact solution for a simple problem in plane strain involving a semi-infinite compressed specimen that abuts a
rigid material. We view this problem as an approximation to a situation involving a grain boundary between a grain
with slip systems aligned for easy flow and a grain whose slip system alignment severely inhibits flow. The solution
exhibits large slip gradients within a thin layer at the grain boundary.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This paper has two goals. The first is a generalization of classical single crystal, small-deformation vi-
scoplasticity ! that accounts for geometrically necessary dislocations, here referred to as GNDs. This
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(1999).
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generalization—formulated in terms of a microscopic balance involving forces work conjugate to slip in
conjunction with the kinematics of GNDs (Burgers, 1939; Kroner, 1960)—is based on and follows closely
its finite deformational counterpart developed by Gurtin (2002).

Our second goal, which builds on the single-crystal theory discussed above, is a theory of bicrystals. Here
our use of microforces equipped with their peculiar balance allows for a direct characterization of grain
boundaries based on physical quantities associated directly with the individual slip systems.

1.1. Classical single-crystal viscoplasticity

Let u(x, ¢) denote the displacement of an arbitrary point X in B, the region of space occupied by the body.
The classical theory of plasticity is based on the decomposition

Vu=H* + 1, (1.1)

in which H® represents stretching and rotation of the lattice, while H” represents the evolution of dislo-
cations through the lattice. The symmetric and skew parts of H°, namely

E°=1(H’+H) and W = L(H — H"), (1.2)

represent the lattice strain and the lattice rotation. Single-crystal plasticity is based on the additional hypo-
thesis that plastic flow take place through slip on prescribed slip systems « = 1,2,..., 4, with each system «
defined by a slip direction s* and a slip-plane normal m*, where

s*-m*=0, |[s*,jm*|=1, s*,m”= constant. (1.3)

This hypothesis manifests itself in the requirement that H” be characterized by slips (microshears) y*(x, ¢) on
the individual slip systems via the kinematic constitutive assumption

A
H = Zy“s“ ® m”. (1.4)
a=1

Here and in what follows, lower case Greek superscripts o, f3, . .. denote slip-system labels and as such have
the range 1,2, ..., 4. In the absence of work hardening the classical theory is typically based on viscoplastic
yield conditions

™ = %[’ sgn . (1.5)

Here 7%, the resolved shear, is the macroscopic stress resolved on the «th slip system; the field ¢ > 0, the slip
resistance on o, is an internal state-variable consistent with a system of hardening equations

A
¢ =Y ke % )i, 6*(x,0) =i >0, (1.6)

p=1

where the moduli £ > 0 characterize strain-hardening due to slip; and § > 0 is a constant that charac-
terizes the rate dependence of the material. * These equations supplemented by the local momentum ba-
lance and a standard elastic stress—strain relation form the basic equations of the theory.

2 We use lightface for scalars (a,b, 4,...); lower-case boldface for vectors (a,b, . ..); upper-case boldface for rensors (E,T,...). We
write tr'T and TT for the trace and transpose of a (second-order) tensor T and use a “dot” to denote the inner product of tensors:
T-E = T;E;; (using cartesian components and summation convention). Given any vector u, (ux) is the skew tensor defined by
(u><)l.j = gyju,. For C a fourth-order tensor and E a second-order tensor, (C[E]),; = CyiEx. For u a vector field and T a tensor field,
(Vu)ij = au;/axﬁ (leT)I = 67}j/6xj, and (CUI‘IT)U- = ai,,an,»q/éx,,.

3 Most metals at room temperature are almost rate independent and as such would be described by small values of 0.

i
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1.2. Generalization of the classical theory: a gradient theory that accounts for GNDs

The plastic distortion H” is not the gradient of a vector field, and GNDs may be characterized by the
closure failure of circuits as mapped by H?, and hence by the geometric dislocation tensor

G = curl H”. (1.7)

Here we generalize the classical theory by allowing for constitutive dependences on G. We accomplish this
by developing the theory within a framework that allows for microforces whose working accompanies slip
as described by the fields y*. This microforce system consists of vector stresses £ and scalar internal forces
n* whose working, within any subbody R, is given by

A
> / (W + & - Vi) dV.
o=1 YR

Because of the nonstandard nature of the microforces, we base our treatment on the principle of virtual
power. A consequence of this principle is that the classical Newtonian balances need be supplemented by a
microforce balance

divé*+7*—n*=0

for each slip-system o (Gurtin, 2000). The presence of the resolved shear t* couples the macroscopic and
microscopic systems.

We restrict attention to a purely mechanical theory with underlying “second law’ the requirement that
the free-energy increase at a rate not greater than the rate at which work is performed. Letting i denote the
free energy per unit volume and T the stress, this leads to a local free-energy inequality

A
Y-T-E =) (& V)" +79") <0 (1.8)
o=1
that is basic to our development of constitutive equations.

The classical theory fits trivially within this framework. To see this, assume that the free energy is
“elastic”, so that y = T - E, take & = 0, and define n* = a“|)')“\b sgn y*. The microforce balances t* = n* are
then satisfied trivially, as is the free-energy inequality. For the classical theory the additional structure
represented by the microforce balances and second law is of little benefit. But the inclusion of GNDs leads
to a gradient theory, and here the microforce balances and second law yield a physical framework that
accounts in a natural manner for the distribution of GNDs within the body.

To develop a crystalline theory that accounts for GNDs, we take a physical approach that underlines the
reasons for specific constitutive assumptions:

(1) We model distortions of the crystal lattice due to GNDs by augmenting the classical quadratic strain
energy with a defect energy ¥(G). *

(i1) Using the free-energy inequality as a guide, we develop appropriate constitutive equations for the mi-
croforce fields. The microforce balances and these constitutive equations together form the viscoplastic
yield conditions.

In appealing to the free-energy inequality we do not seek the most general possible theory, but one with

dissipative part close to its classical counterpart. In this spirit, we are led to constitutive equations for =*
and &”, which, when substituted into the microforce balance, result in the viscoplastic yield conditions

4 A free energy of this form was introduced by Teodosiu (1970) within a classical framework involving only standard forces.
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= o"f(9*) — div(m* x Ts*), T =0¥/0G. (1.9)
Here o%f(y*), with ¢” consistent with the hardening equations (1.6) and f, possibly of the classical form

SG) = 177 sen i, (1.10)
is dissipative, while

div(m* x Ts") (1.11)

is strictly energetic. The term (1.11) is characteristic of kinematic hardening; its negative represents a
backstress on the ath slip system (cf. the discrete-dislocation computations of Cleveringa et al. (1999), which
display large backstresses).

The chief conceptual difference between the classical theory and that presented here is that the yield
conditions (1.9) represent constitutively augmented microscopic force balances. This difference renders the
yield conditions nonlocal (in fact, dependent on first and second slip-gradients) and suggests the need for
supplementary boundary conditions; we here discuss idealized boundary conditions that represent mi-
croscopic counterparts of clamped and free boundaries. Because the underlying mechanics is based on the
principle of virtual power, the yield conditions and microtraction boundary conditions have a variational
formulation (cf. Gurtin, 2002) that should provide a useful basis for computations. The theory presented
here, which is the small-deformation counterpart of the finite-deformation theory of Gurtin (2002), differs
radically from other gradient theories of plasticity, > chiefly because of the central role played by the mi-
croforces and their abstract introduction as forces work conjugate to slip. For that reason, we sketch an
argument of Gurtin (2002) showing that the microstresses & represent counterparts within the present
theory of the classical Peach—Koehler force on a single dislocation.

1.3. Bicrystals: theory without interfacial energy

Grain boundaries influence the plastic behavior of polycrystalline solids in many ways: (i) they modify
the yield stress of the material, acting as barriers for glide dislocations in the initial stages of plastic de-
formation (cf. e.g., Hirth, 1972; Miracle, 1991; Mandal and Baker, 1995; Francois et al., 1998; Polcarova
et al., 1998); (ii) they may, conversely, act as sources of bulk dislocations, and thus transmit plastic slip
between adjacent grains (Shen et al., 1988; Clark et al., 1991; Pestman and De Hosson, 1992); (iii) they may
also promote superplastic behavior by a macroscopic slip mechanism: the grains may slip one relative to the
other along the grain boundaries, and this may greatly enhance plastic deformation (see for instance
Margolin (1998) and Fu et al. (2001)); (iv) grain boundaries may also act as channels for mass and impurity
diffusion, or as nucleation or segregation sites for impurities or new-phase particles (Frangois et al., 1998).

We focus here on the influence of grain boundaries on the evolution of GNDs in the interior of the
grains, explicitly accounting for the barrier-effect on plastic slip.

The basic grain boundary relations that we obtain play the role of interfacial yield conditions. Specif-
ically: (i) the relative slip of the grains along the boundary is activated when the shear stress at the interface
reaches a suitable threshold; (ii) analogously, plastic slip within each grain at the grain boundary S is

5 Cf. Fleck and Hutchinson (1993) and Fleck et al. (1994), who develop small-strain theories that account for strain gradients within
a Toupin-Mindlin framework; this work is reformulated by Fleck and Hutchinson (2001) using microforces. Cf. also Naghdi and
Srinivasa (1993, 1994), who develop a finite Cosserat theory with GNDs characterized by curl F* (cf. Shizawa and Zbib, 1999). Earlier
attempts are those of Aifantis (1984, 1987), Wright and Batra (1987), Batra (1987), Batra and Kim (1988), Muhlhaus and Aifantis
(1991a,b), Zbib and Aifantis (1992). A survey of gradient plasticity theories is contained in the review of Fleck and Hutchinson (1997).
The theories mentioned above all involve higher-order boundary conditions. A discussion of gradient theories not equipped with
higher-order boundary conditions is beyond the present scope.
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allowed on any given slip system o only when the component of the microstress & normal to S reaches an
assigned threshold, thereby rendering the grain boundaries barriers to plastic slip in the initial stages of
plastic deformation. °

Precisely, we consider a body composed of two grains, labelled by the integers 1,2. Let S denote the
smooth surface that represents the grain boundary, and denote by ng the unit normal to S directed outward
from grain 1. We assume that the grains are rotated one relative to the other, and write

s =Rs], m} = Rm, (1.12)

where R is an assigned rotation, and (s, m}) and (s, m3) are the slip systems in grains 1 and 2, respectively.
We allow the grains to slip, one relative to the other, along S, so that the displacement u may be discon-
tinuous across S. We write [u] for the jump ’ of u across S and

d = [a]

for the grain-boundary slip-rate.
The first set of conditions at S consists of the classical traction balance

[Tns =0

across S in conjunction with a balance between the tangential tractions and the grain-boundary shear-stress
T

(Tlns)tem = (Tzns)tan =T

Here (Ting),,,
t of the form

denotes the tangential projection of T;ng on S. We consider a simple constitutive equation for

d

T =gld|’ -

(1.13)
Here ¢ is a positive modulus. As suggested by experiment (Biscondi, 1982), ¢ should depend on the ori-
entation ng of the boundary and the misorientation R of the grains. Choosing ¢ = 0, the macroscopic slip
condition (1.13) is rate independent and represents a Coulomb-friction law for the relative slip of the grains
at the interface.

The second set of conditions at S have the form of viscoplastic boundary conditions for the microforces
&%, viz.

& ng = L7 seny?, & -mg =373 sgn s, (1.14)

with the {7 positive moduli that measure the resistence of the grain boundary to plastic slip. These moduli
depend on the slip system under consideration, the orientation of the boundary with respect to the grains,
the relative misorientation of the grains, and the net accumulated slip from both grains at the grain
boundary (cf. (10.15) and (10.16)).

% These boundary conditions should be compared to those of Shu and Fleck (1999), who discuss bicrystals within the Fleck and
Hutchinson (1997) theory. For grain-boundary conditions these authors augment more or less standard conditions with the
requirement that the normal gradient of the displacement be continuous.

7 We write ¢, for the limit of a bulk field ¢ at S from grain 1, ¢, for the limit from grain 2, and [e] = @, — 1.

Since slip across a grain boundary is generally a high temperature phenomenon, the condition (1.13) may be replaced by continuity
of the displacement across S under normal operating conditions (John Hutchinson, private communication). For convenience, we use
the same power ¢ in all power laws.
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Since the microstress &* is a function of the geometric dislocation tensor through the relation
& =m”* x (0¥/0G)s*, the viscoplastic yield conditions (1.14) (with {7 constant for the purpose of this
discussion) may be interpreted as follows for a body under monotone increasing loading:

(a) In the initial stages of deformation, where the density of GNDs is small, the microtraction &7 - ng on,
say, the grain 1 side of S, should also be small and, by (1.14) and the assumption that the exponent ¢ is
small, the slip-rate j} ~ 0. Thus in this regime, the grain boundary acts as a barrier for plastic slip. This
constraint should induce increasing slip gradients on o near S and this in turn should result in an increase in
the density of GNDs at S in grain 1. This should be a “boundary layer effect”, not apparent away from S,
where one would expect the accumulation of GND to be of lesser magnitude. Thus we would expect the
dislocation content to exhibit a sharp peak at S during the initial stages of flow.

(b) As the density of GNDs increases at the grain boundary, the microtraction £} - ng also increases, and
this, by (1.14), eventually decrease the magnitude of the constraint on y{, which may attain large values with
only minor changes in the microtraction &} - ng. With increasing loading this relatively constant behavior of
&1 - ng would, since & = &*(G), tend to (at least in part) hold the content of GNDs at S in grain 1 constant,
especially if many slip systems are active there.

The behavior specified in (a) and (b), which is a consequence of the microtraction conditions at the grain
boundary, seems consistent with the experiments of Sun et al. (1998, 2000), who determine the geometric
dislocation tensor in a bicrystal through measurements of lattice rotations.

We discuss the specialization of the theory to strict plane strain, as the results there are more transparent.
In particular, restricting attention to the rate-independent limit of the theory, we establish a more precise
version of the remarks (a) and (b).

Finally, we obtain an exact solution of a simple problem in plane-strain involving a semi-infinite
compressed specimen that abuts a rigid material. The solution may be viewed as an approximation to a
situation involving a grain boundary between a grain with slip systems aligned for easy flow and a grain
whose slip system alignment severely inhibits flow.

2. The geometric dislocation tensor G
2.1. G in terms of slip gradients
We base the theory on standard crystalline kinematics as specified in Section 1.1 with GNDs charac-

terized by the geometric dislocation tensor as defined in (1.7). Since curl Vu = 0, we may use (1.1) to express
G in terms of either H® or H”:

G = curl Y = —curlH*. (2.1)
Further, since
O O o a’ya o o o o o
(curl(y"s” @ m ))ij = Oirg G_x,.sjmq =(Vy"xm”")®s )ijv

(1.4) yields
4
G= Z(Vy”‘ xm”) ®s”. (2.2)
a=1

Let 0S denote the boundary curve of an oriented plane surface S with unit normal e. By Stokes’ theorem,
the Burgers vector corresponding to the curve 0S is given by

/ H”dx:/(curlH”)TedA :/GTedA. (2.3)
as s s
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The vector field G'e therefore represents the Burgers vector (per unit area) for small loops on the plane IT
with unit normal e; i.e., the local Burgers vector for those dislocation lines piercing I1.

2.2. Digression: G in terms of dislocation densities

Tensors such as G meant to characterize specific distributions of dislocations are often expressed as
linear combinations of dislocations pl @ s. Here p is a (signed) density, I ® s is a dislocation dyad, and I and
s are unit vectors with s the Burgers direction and [ the line direction (Nye, 1953). Moreover, an edge dis-
location has I 1_s, a screw dislocation has | =s, and a mixed dislocation has I and s neither parallel nor
orthogonal.

A class of expansions in terms of dislocations consistent with the crystalline structure of the material was
utilized by Kubin et al. (1992), Sun et al. (1998, 2000), and Arsenlis and Parks (1999), who note that ca-
nonical dislocations for slip on the oth system are: screw dislocations with Burgers direction s*; and edge
dislocations with Burgers direction s* and line direction

I =m" x s".

The canonical dislocation dyads for slip on o are therefore s* ® s* and I* ® s*, and Arsenlis and Parks (1999)

have shown that the expression (2.2) may be rewritten as a decomposition of G in terms of such dyads;
using “®” and “F" as screw and edge symbols, this expansion has the form

A

G=) ( pls"®@s" + pl'es ), pl=-s"-Vy", pl=I0-Vy. (2.4)

po —_———— e — -

pure screw dislocation  pure edge dislocation

o

Note that in each case the directional derivative that defines the density is in a direction perpendicular to the
line direction.
To verify (2.4), fix o, expand Vy* with respect to {s*,/*,m*}, and then compute Vy* x m*; the result is

(8" - Vy)(s* xm*) + (I" - Vy*)(I* x m*) = —(s* - Vy")I* + (I" - Vy*)s™.
Thus

(Vy*xm*) @s* = —(s*- VY )" @s* + (I" - Vy")s* @ §*
and (2.2) reduces to (2.4).

3. Principle of virtual power—macroscopic and microscopic force balances

We write
=047
for the list of slips. The theory presented here is based on the belief that the power expended by each in-
dependent “‘rate-like” kinematical descriptor be expressible in terms of an associated force system con-

sistent with its own balance. But the basic “rate-like” descriptors, namely a, E°, and  are are not
independent, as they are constrained by

A
Vi =E + W+ > (s @m”) (3.1)
a=1
(cf. (1.1), (1.2), (1.4)), and it is not apparent what forms the associated force balances should take. For that
reason, we determine these balances using the principal of virtual power.
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3.1. Principle of virtual power

With each evolution of the body we associate macroscopic and microscopic force systems. The mac-
roscopic system is defined by a traction t(n) (for each unit vector n), a field with a more or less standard
interpretation, and an external hody force f presumed to account for inertia. The microscopic system, which
is nonstandard, is defined by: (i) a lattice stress T that expends power over the lattice strain-rate E; (i) an
internal microforce n* for each slip system o that expends power over the slip-rate y*; (iii) a microstress &*
that expends power over the slip-rate gradient Vy*; and (iv) a microtraction E*(n) that expends power over
7. Since E¢ is symmetric, we require that the lattice stress T be symmetric.

We characterize the force systems through the manner in which they expend power; that is, given any
subbody R, through the specification of: (i) Z.«(R), the power expended on R by material external to R; and
(ii) 2 (R), a concomitant expenditure of power within R. Precisely,

Pet(R) = [ptm) -add + [ f-adV + Y0 | [, Z*n)j*d4, } (3.2)

Piwi(R) = [[T-EdV + 30, [[(m9" + & - Vi) dV.

Fix the time and consider the fields u, E°, and 7 as virtual velocities to be specified independently in a
manner consistent with (3.1); that is, denoting the virtual fields by u, E°, and % to distinguish them from
fields associated with the actual evolution of the body, we require that

A
Vi=E+W+) s om) (3.3)
=1
for some skew tensor field W°. Further, we define a generalized virtual velocity to be a list
7 = (0,E7)
of such fields and write 2 (R, ¥") and Ziy (R, 7") for 2 (R) and Zi,((R) when the actual fields u, K¢, and ¥y
are replaced by their virtual counterparts u, E¢, and 7.

We postulate a principle of virtual power requiring that, given any generalized virtual velocity ¥~ and any
subbody R, the corresponding internal and external virtual powers are balanced:

PR, V) = PR, V7). (3.4)

3.2. Macroscopic and microscopic force balance

We now deduce the consequences of this principle. In applying the power balance (3.4) we are at liberty
to choose any 7~ consistent with the constraint (3.3).

3.2.1. Macroscopic force balances
Consider first a generalized virtual velocity without slip, so that 3 = 0, choose the virtual field u arbi-
trarily, and let E° and W* denote the symmetric and skew parts of Vu, so that

Vii = E° + W°

and the constraint (3.3) is satisfied. Then, since T is symmetric, T - E° =T Vi and the power balance (3.4)
takes the form

/aRt(n)-ﬁdA:/R(T-Vﬁ—fﬁ)dV.
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Equivalently,
/ (t(n) — Tn) -ud4 = —/ﬁ~ (divT +1f)dV,
OR R

and since this relation must hold for all R and all u, a standard argument leads to the traction condition
t(n) = Tn and the classical local force balance

divT +f=0. (3.5)

3.2.2. Microscopic force balances
To discuss the microscopic counterparts of these results, we define the resolved shear t* through

™ =s"-Tm". (3.6)
Consider a generalized virtual velocity with u = 0, choose the virtual field y arbitrarily, and let E¢ and W*
denote the symmetric and skew parts of the tensor field — ) 7”*(s” ® m*), so that

A
,)';oc(sx ® ma() — _(Ee + we)

a=1
Then, since T is symmetric, T - E‘=— >, 77 and the power balance (3.4) yields the microscopic virtual-
power relation

3 / Fwydi=3 / (7 — )7 + & V]V (3.7)

to be satisfied for all  and all R. Equivalently,

A

A
Z / (E*(m) — & -m)y"d4 = — Z /(divfX + 1% — %) dV,
OR oy R

o=1

and arguing as before this yields the microtraction conditions

E'm)=¢-n (38)
and the microforce balances
divé*+t*—n*=0 (3.9)

on each slip system o.

4. Energy imbalance

We consider a purely mechanical theory based on a second law in which the temporal increase in free
energy of any subbody R is less than or equal to the power expended on R. Precisely, letting iy denote the free
energy per unit volume, we take the second law in the form of an energy imbalance asserting that

/ VAV < Pou(R) (4.1)

for all subbodies R. In view of (3.2) and the identity Z.(R) = Zin(R), (4.1) has the alternative forms

LW dV < [, Tn-udd + [ f-adV + 30, [ (& -n)j*d4,

. (4.2)
S dV < [fT-EdV + 3, [o(w9* + & - Vi*)dV.
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Since R is arbitrary, (4.2), yields the free-energy inequality

A

¥—T-E =) (& Vi + ") 0. (4.3)

o=1

We use this inequality as a guide in developing a suitable constitutive theory.

5. Constitutive theory—thermodynamic restrictions

Our goal is a theory that allows for constitutive dependences on G, but that does not otherwise depart
drastically from the classical theory. Toward this end, we begin with a constitutive equation for the free
energy in which the classical elastic strain-energy is augmented by a defect energy ¥ (G):

¥ =1E°- C[E’] + ¥(G). (5.1)
Central to the theory is the thermodynamic defect stress defined by
o¥(G)

T = o (5.2)
Let G = G(¢). Then, by (2.2),
A A
Y(G) Z Vy* xm*) - Ts* = Z(m“ x Ts*) - V97, (5.3)
a=1 a=1

showing that the normal slip-gradients m* - Vy* do not affect temporal changes in the defect energy. Next,
by (5.1) and (5.3),

A
¥ =C[E]-E + ) (m* x Ts") - Vj", (5.4)
o=1
and the free-energy inequality (4.3) takes the form
(T — C[E*]) E‘+Zm+§—m“xvs“)-w“]>o. (5.5)

The left side of this inequality represents the dissipation, per unit volume. Consider constitutive equations
giving T, 7%, and & as functions of E°, G, and the list y = (!,9%,...,74) of slip-rates. We require that the
inequality (5.5) hold for all choices of E°, §, and Vj; the linearity of this inequality in E° and V7 then
reduces the constitutive equation for T to the classical form

T = C[EY) (5.6)
and—what is more important—requires that
& =m" x Ts" (5.7)

Thus (5.5) reduces to >, 7*9* > 0. Guided by this inequality and the classical relation (1.5), we posit a
constitutive relation for n* in the form

= a"f()), (5-8)

where, for each fixed «,

SG) ==/ (=7), SO =0, (5.9)



P. Cermelli, M.E. Gurtin | International Journal of Solids and Structures 39 (2002) 6281-6309 6291

and where the slip resistances ¢” are consistent with the hardening equations
A
6" = k' o ...,a"if,  ¢*(x,0) =0} >0 (5.10)
=1

(with hardening moduli £** possibly dependent also on G). The constitutive relations (5.1), (5.7) and (5.8)
then satisfy the free-energy inequality. Note that the microstress & is parallel to the ath slip plane, and that
n* is dissipative, while & is energetic.

Note that the constitutive theory is completely specified by the elasticity tensor C, the defect energy ¥,
the viscosity function f, and the hardening moduli £*/; and that the dissipation is given by > o®f(7*)7*.

6. Viscoplastic yield conditions

The microforce balance div & + t* — n* = 0 augmented by the constitutive equations for n* and &” plays
the role of a viscoplastic yield condition

o (—1)div(m* x Ts?) = £ (7) (6.1)

backstress due to energy stored in dislocations dissipative hardening due to slip

for each slip system «. Since T = T(G), the backstress depends on G and VG, and hence on the first and
second gradients V) and VVy#, B =1,2,..., 4, thereby rendering the yield condition strongly nonlocal.

The yield condition (6.1) embodies two different hardening mechanisms: that provided by the hardening
equations (5.10) and that which results, via the backstress, from an energetic dependence on G. Hardening
imposed by the hardening equation is strictly dissipative. This hardening has a purely phenomenological
nature; the only restriction placed by the basic theoretical framework is that the slip resistances ¢* be
nonnegative. Moreover, the resulting hardening provides no contribution to a backstress. On the other hand,
the hardening resulting from the backstress is strictly energetic. This hardening is a consequence of the
microforce balance and the restrictions imposed by the thermodynamical framework. ° It is important to
bear in mind that the hardening equations allow for latent hardening via the moduli k*#, o # f. In contrast,
hardening arising from the backstress would not directly induce latent hardening; indeed, simple shear is
compatible and hence has G = 0, but would generally involve multiple slip and hence latent hardening via
(5.10).

Rate-independent yield conditions may be obtained from (6.1) with f of the classical form (1.10) by
formally passing to the limit as  — 0*. The result, for each slip system, is as follows (cf. Gurtin, 2000):
when the left side of (6.1) lies within the elastic range the slip on « vanishes,

—¢* < v+ div(m®* x Ts*) < ¢, 3 =0, (6.2)

on the other hand, slip of the right sign is possible when the left side of (6.1) reaches either of the two yield
limits,

9 Cf. the discrete-dislocation computations of Cleveringa et al. (1999), which display large backstresses. These computations are
based on plane strain with simple-shear boundary loading, with the specimen a composite consisting of elastic particles within a single-
crystal matrix whose only active slip system is parallel to the direction of shear. Computational results of Bittencourt et al. (submitted
for publication) comparing the nonlocal theory presented here to the discrete-dislocation theory at micron length scales show
qualitative agreement with respect to the backstress. A second set of comparisons, again based on plane strain and simple-shear
loading, performed on a pure specimen with two active symmetrically placed slip systems, demonstrate that both hardening
mechanisms play essential roles in the emergence of a boundary layer and in the effect of specimen size.
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4+ div(im* x Ts") = +0*, $* =0, (6.3)
 +divim* x Ts*) = —¢*, $*<0. [’ ’

For the special case of a quadratic, isotropic defect energy
¥(G) = Hci|GF + ol GF + 4G — GT)P), (6.4)
with ¢;, ¢, and c; constant, the defect stress has the form
T=cG+ce(trG)1 +¢3(G = G") = (¢c1 + ¢3)G + 2 (trG)1 — 3G,
or equivalently, by (2.2),

A
T= Z((cl +¢3) (VY xmf) @8 + (VP - 1)1 — 38 @ (V)P x mP)).
=1

Thus, since & = m* x Ts%,
A
&= Z((Cl +¢3)(s* - P )m* x (Vyf x mP) + o, (V)P - 1) — c3(m* x sF)VyF - (mP x s%)),
=

and, since m* x (Vy# x mf) = [(m* - m#)1 — m* @ m*]V#, if we define (constant) zensors
M = (¢; + ¢3)(s* - sP)[(m* - mP)1 —m’ @ m*] + o, (I* @ I") — c3(m* x s) @ (W’ x s%), (6.5)
then the microstress becomes
A
g=> My, (6.6)
=1

and the yield condition has the explicit form

A
v+ Y MYV = et f (7). (6.7)
p=1

While the tensors M* have a complicated form, they are constant and, given the constants ¢y, ¢, and c3,
may be computed for any prescribed single crystal. Finally, the basic equations of the theory consist of:

(1) the kinematical equations (1.1)—(1.4) and (2.2);
(i1) the macroscopic balance (3.5) supplemented by the stress—strain relation (5.6);
(iii) the yield conditions (6.1) (general theory) or (6.7) (quadratic, isotropic defect energy) supplemented by
the hardening equations (5.10).

7. The microstress £ as a continuous distribution of Peach—Koehler forces

The present theory is viscoplastic with dislocations distributed continuously throughout the body via a
tensor field G. Even so, because there is a natural decomposition of G into continuous distributions of
screw and edge dislocations, one might expect there to be a counterpart of the Peach—Koehler force within
the present theory. For a distribution of pure dislocations evolving on the ath slip plane, such a distributed
Peach—Koehler force should be parallel to the ath slip plane and perpendicular to the line direction; such a
force should therefore have the form ¢ (m* x I*) for edge dislocations on o and ¢ (m* x s*) for screw
dislocations on «, where the ¢’s are scalar fields that represent associated force densities. Further, in the
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spirit of the classical Peach—Koehler force, these force densities should be energetic in nature. We now give
an argument of Gurtin (2002, Section 8.1), showing that if we account for specific dislocations through the
decomposition (2.4), then the microstress is a sum of such continuously distributed Peach—Koehler forces.
To begin with, note that
. A A
PG =T ) (08" @8 +pll'@s") =) (0% +tp0),
=1 a=1
with
tr =s"-Ts%, =10 Ts" (7.1)

The fields t%, and t} therefore represent work-conjugate scalar microforces for densities of screw and edge
dislocations on the slip system o. These fields therefore represent viable candidates for the force densities
associated with such screw and edge dislocations.

Next, fix o and expand T with respect to the basis {s*,/*, m*}. Then

T=s"0s+I"®s" + K,
with K a sum of tensor products of the form m* ® (...), (...) @ m*, and (...) ® I, so that m* x Ks* = 0.
Thus, since I* = m* x s*, we may use (5.7) to conclude that

& =1t (m" xs*) + t7(m* x [I"). (7.2)
Thus the microstress is governed solely by the resolved values t and t? of the defect stress on the canonical

dislocation dyads for «. What is more important, the microscopic forces that comprise (7.2) are of the
requisite form and hence have the physical interpretations:

o o o o o o
t? (m” x s”) and 7 (m* x I").
———— ———

distributed Peach-Koehler force on screw dislocations distributed Peach—Koehler force on edge dislocations

Based on this argument, we view &* as a net distributed Peach—Koehler force for the slip-system o.
Finally, note for future use that (7.2) may be written more simply as

&=l - s

8. Microscopically simple boundary conditions

The presence of microstresses results in an expenditure of power jéB(?,‘“ -n)y*d4 by the material in
contact with the body, and this necessitates a consideration of boundary conditions on 0B involving the
microtractions & - n and the slip-rates 7*, where n denotes the outward unit normal to 0B. We discuss now a
simple class of boundary conditions for these fields on a prescribed subsurface S of 0B. These boundary
conditions result in a null expenditure of micropower in the sense that (¢ -n)y* = 0 on S for all «.

The boundary is microfree on S if

& n=0 onS, a=1,2,...,4. (8.1)

This boundary condition would seem consistent with the macroscopic boundary condition Tn = 0 on S. By
(5.7), & is parallel to the ath slip plane, Thus, if the boundary is microfree, then, for each «, & (and hence
the net Peach—Koehler force on GNDs on «) must be tangent to the line of intersection of the «th slip plane
with S. (Other consequences of the microfree conditions are given by Gurtin (2002).)

One might consider the microclamped conditions

=0 onS, a=12,...,4 (8.2)
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in conjunction with a boundary surface S that is macroscopically clamped in the sense that u =0 on S.
Consider a microclamped surface. Then, by (8.2), the tangential derivative of y* must vanish on S for each
o, so that

4
Zlnxm ®s* onS.
a=1

G on S may therefore be considered as the sum over « of mixed dislocations with Burgers direction parallel
to s* and line direction tangent to the intersection of S with the ath slip plane, and with density [n x m* |a,
Moreover, G'n =0 on S; hence the net Burgers vector associated with small loops on S vanishes. Note
also that, by (1),

o o a’y“ o __ (g 671
pL =—(s"-n) n and p? = (I"-n) an On S, (8.3)
thus
Py I''m
pt s*-m’

which is the assertion that the screw and edge densities for « be in inverse ratio to the projections of their
line directions on n. Therefore, p% =0 or s*-n = 0 if and only if p? =0 or I”-n = 0.

9. Two-dimensional theory
9.1. Strict plane strain

Under plane strain the displacement has the component form
ui(x1,x2,8) (i=1,2), u3=0,
and results in a displacement gradient Vu that is independent of x3, so that
(Vu); = (Vu);, =0 (j=1,2,3), (9.1)
ie.,
(Vu)e = (Vu)'e =0, with e =e;, (9.2)

the out-of-plane normal.
When discussing plane deformations we restrict attention to planar slip systems; that is, slip systems o
that satisfy

s e=0, m-e=0 s xm" =e, (9.3)

with slips y* independent of x;; all other slip systems are ignored. The assumption of planar slip systems
yields restrictions on the components of H” and (hence) H®, E°, and W* strictly analogous to those of Vu as
specified in (9.1) and (9.2). There is a large literature based on this approximative hypothesis. The resulting
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fully two-dimensional kinematics, which we refer to as strict plane strain, is important in constructing
simple mathematical models, often based on two slip systems. '°
In strict plane strain the lattice rotation W° has the form

W¢ = d(ex),
where ¥(x;,xz,1), the lattice-rotation angle, measures local rotations of the lattice. Then H® = E° + ¥(ex)
and, since curl(d(ex)) = —e ® V1), we may use (2.1) to conclude that

G=e® VYV —curlE. (9.4)

9.2. Burgers vector g
The following notation for first and second slip-directional derivatives of a scalar field @ and a vector field
v is convenient:
Oy=s" VO, &= (VVP)s' v;=(Vv)s' (9.5)
Then, since e - Vy* = 0, it follows that Vy* x m* = (s* - Vy*)(s” x m*) = y*, e, so that, by (2.2),

A
G=exg g=) 7.5 (9.6)

Thus, since each slip direction s* is orthogonal to e,
g le.

Further, because g = G'e, g represents the Burgers vector (per unit area) for small loops on the cross-
sectional plane (the plane with unit normal e). Moreover, (9.6) shows G to have the form of a single edge
dislocation with line direction e and Burgers vector g.

9.3. Constitutive theory—yield conditions

In view of (9.6), we can write the free energy in the form
¥ =3E°- CIE]+ ¥(g), 9.7)
so that, by (9.6),

¥ =C[ET-E +) (s )i,
a=1

with

_o¥(g
= e
The free-energy inequality (4.3) therefore takes the form

~

t

(T — C[E‘]) E‘—i—Zny—i— — (s*-t)s*) - V§*] = 0,

10 ¢y, e.g., Asaro (1983a.b, pp. 45-46, 84-97 and the references therein).
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and arguing as in Section 5, we are led to the relations
&= (s"- )8, (9.8)
n* = f(y*), and T = C[E°]. Thus, since divE” =s*- V(s* - t) = s - t,,, the yield conditions take the form
48" t, =" f(7%).
For the quadratic, isotropic defect energy
¥ (g) = lclgf’, 9.9)
with ¢ constant,

t=cg

& =c(s* - g)s”. (9.10)
On the other hand, by (9.6),

A

g . Sot — ZSocﬁ,y[i’ﬁ ,
p=1

where S* are the slip-interaction coefficients

S = g% . s
Thus
A
éazc[ZSmﬂyﬁ7ﬂ‘|sa (911)
p=1
and the yield conditions become (cf. (9.5),)
A
ey SN = (7). (9.12)
=1
By (9.4) and (9.6),
g = Vo — (curlE%)e. (9.13)

Thus, when lattice-strain gradients are negligible,
g~ V.
Granted this approximation and its second-order counterpart, we have the following approximate forms
for the microstresses and yield conditions:
Y el 8 4 ¢4 ~ (7).
In this approximation, &” is linear in 9 ,, which is the curvature of the deformed «th slip line, " and the

nonlocal term ¢ ,, in the yield condition, which characterizes the backstress, represents the change of this
curvature in the direction of slip on «.

1 At least to within the approximations inherent in the underlying hypothesis of small deformations.
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10. Grain boundaries

In this section we develop kinematical and mechanical transmission conditions across a boundary be-
tween crystalline grains.

10.1. Kinematics

We assume that the bulk material within each grain is consistent with the theory developed in the
preceding sections. We write R (defined uniquely up to a symmetry transformation of the crystal) for the
prescribed orthogonal tensor that defines the relative misorientation of grain 2 relative to grain 1, before
deformation. We assume that the slip systems of the individual grains are labelled in a manner consistent
with this misorientation, so that, labelling the grains i = 1,2 and writing s and m? for the slip directions
and slip-plane normals for grain i,

s;=Rs] and mj = Rm] (10.1)

for each slip system o.

Let S denote the smooth surface that represents the grain boundary, and let ng denote the the unit
normal to S, directed outward from grain 1. We assume that the bulk fields are smooth away from S and up
to S from each grain; given any bulk field ¢, we write ¢, for the limit of ¢ at S from grain 1, ¢, for the limit
of ¢ from grain 2, and [¢] = ¢, — ¢, for the jump of ¢ across S. Then, by (1.4) and (10.1),

A

A A
[H]=> [rseom]=> #ksseom;-> isiom (10.2)
o=1 o=1

=1

To exclude cavitation at the grain boundary we require that the normal component of the displacement u
be continuous across S:

[u] -ng =0. (10.3)

The jump [u], which is tangential to S, represents grain-boundary slip.

10.2. Force balances at the grain boundary

Let R be an arbitrary subregion of the body and assume that
Sk =SNR,

the portion Sz of S in R, is a smooth subsurface. Let ¢ denote a bulk field, so that ¢ may suffer a jump
discontinuity across S. Then integrals such as [, VodV, [, ¢dV, and [,, ¢d4 are treated as ordinary in-
tegrals with piecewise continuous integrands; e.g., the first integral is given as the integrals of V¢ over the
portion of R in grain 1 plus the integral over the portion of R in grain 2.

We neglect surface stresses within S that act on Sk along its boundary curve 0Sz. The external power
expenditure for R is thus, as before, given by (3.2);, so that, since t(n) = Tn,

A

yext(R):ARTn-ﬁm+/Rf.udV+Z

=1

/aR(gf -m)j*dA. (10.4)

The internal power consists of the bulk portion (3.2), augmented by the contribution due to the presence
of the grain boundary. The basic kinematic quantities that act internally to Sy are the slip-velocity [u] and
the limiting slip rates % and y3; to accomodate these we introduce a macroscopic internal force T conjugate
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to [a]] and microscopic internal forces II7 and II; conjugate to 7 and 3. We therefore write the internal
power in the form

Sr

A
%M(R):/T-EedV—i—Z/ Ty 4 & Vy)dV+/r [u]dA+Z (I35 + I1575) d4.
R 1
(10.5)
Consistent with the constraint ng - [u] = 0, we require that t be tangential:
T -Ng = 0.

We define virtual velocities as in Section 3.1, except we now add the grain-boundary constraint
ng - [u] = 0. Then, as before, the principle of virtual power requires that (R, V") = P (R, ?") for all R
and all virtual velocity fields ¥". We decouple the grain boundary from the bulk material by choosing an
arbitrary subsurface P of S and a subregion R such that S; = P, and then shrinking R smoothly down to P.
In this process the limiting values of the integrals over R vanish, since the volume of R vanishes, while

[ rocnat— [ aan [ @ mrans ez

and we are therefore led to a virtual power principle for a “pillbox” P of infinitesimal thickness:

/P[[Tns-ﬁ]}dA—l-i/P[(fa-ns)?“]dAz/Pr[[ﬁ]]dA—i—azA:/ 157 + 1237) d; (10.6)

since P is arbitrary,

[Tns - “JHZM ng)7*] =1- M+Z Iy + 11573), (10.7)

a relation that must hold for all fields 7%, 93, U, and &, on S consistent with the constraint @, - ng = U - ng.
Assume first that the 9*’s vanish identically. The choice u; = u, then yields the classical balance

[T]ns = 0, (10.8)
and we may use the abbreviation
Tlls = Tll'lS = Tan. (109)

On the other hand, the choice o, = 0 yields (Tng — 7) - @, = 0 for all &, tangent to S; since 7 is tangential,
this implies that (Tng),,, = t. (Here a,, denotes the tangential component of a vector a; i.e., au, =
a — (a - ng)ng.) Thus and by (10.8),

(Tng),,. =7 (10.10)

tan

Finally, if we choose u = 0 in (10.7) and use the fact that for each o, }] and 75 are each arbitrary, we are led
to microforce balances for the grain boundary: for each slip system o,

& -ng = —1IIf, & nsg =115 (10.11)
10.3. Energy imbalance

Neglecting grain-boundary energy, the inequality (4.1) remains the appropriate form of the second law
in all motions of the body. Moreover, since S is time-independent,
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W:/RlﬁdV. (10.12)

As before, we shrink R to an arbitrary subsurface P of S. Then (10.12) vanishes and, since Zey(R) = Pin(R)
with 2;,((R) given by (10.5), and since P is arbitrary, we are led to the dissipation inequality

T [[HJHZ I35} + 11373) = 0. (10.13)

We close the theory by specifying constitutive equations for the internal microforces I1} and II; and the
grain-boundary shear stress .

10.4. Constitutive relations

With a view toward specifying orientational variables appropriate to constitutive equations for the grain
boundary, consider a fixed reference lattice and let R; and R, denote the orthogonal tensors that define the
relative orientations of grains 1 and 2 relative to this fixed lattice. Further, let §* and m* denote the slip
direction and slip plane normal for o measured in the reference lattice and define the slip-orientation pair Of
by

0! = (|R/ny - 8|, |R{ng - m*|). (10.14)
Appropriate variables for grain 1 would then seem to be the normal RlTnS to the grain-boundary in the

reference lattice measured with respect to grain 1, the misorientation RZRIT relative to grain 1, and the slip-
orientation pair Of:

(R:R[, R{ng, 07).
Similarly, reversing the roles of the two grains in (10.14), the appropriate variables for grain 2 would be
(RiR;, Ryns, 05),
with 04 the natural counterpart of (10.14) for grain 2. If we identify the reference lattice with the lattice as
oriented in grain 1, then R; =1, R =Ry, s{ =§*, m{ = m*, s = R§*, mj = Rm*,
Of = (Ins - si, [ng - mf[),  OF = (Ing - s3], s - m3]),
and the appropriate orientational variables for grains 1 and 2, respectively, become
(R,ng,0?) and (R",R'ng, O%).

Guided by the foregoing discussion, the bulk constitutive equations (5.8), and the dissipation inequality
(10.13), we assume that there is a constitutive function @ > 0 and a scalar ¢ > 0 such that

I =i sendt, { = k@(R,ms, OF), (10.15)
3 = G350 senis, &5 =x®(R",R'ng, 03),
where k > 0, defined by

A

() > (351 + 195, w(x,00=1 (10.16)

f=1

represents softening (or hardening) due to slip accumulated at the grain boundary. (We would expect
softening, since the continued accumulation of slip should induce disorder in the grain boundary.)
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We assume that the shear stress t is a function of the grain-boundary slip-rate
d = [u].

We consider a simple constitutive relation for t of a form similar to that assumed for IT?, in which the role
of sgnyy is replaced by the grain-boundary slip-direction d/|d|. Precisely, we assume that

d
T= m(nS,R)|d|5m, (10.17)

with ¢ > 0, so that, by (10.16), the accumulation of bulk slip at the grain boundary induces softening in the
relation between t and d.

It is clear that the constitutive relations developed above are consistent with the dissipation inequality
(10.13).

10.5. Viscoplastic yield conditions for the grain-boundary

The force balances (10.10) and (10.11) supplemented by the constitutive relations (10.15) and (10.17)
play the role of viscoplastic yield conditions for the grain boundary. These consist of the microtraction
conditions

—& ng =53 sent, = Kk@(R,ng, 07),
. s L ! o (10.18)
62 ‘Dg = €2|y2| Sgn’))é, 52 = K¢(R ,R nS> 027)

for each slip system o, where x satisfies (10.16), together with a condition
(Tas), = o5, R (10.19)
for the macroscopic shear stress.

Note that @(R,ns, 0%), ®(R",R"ng, 0%), and ¢(ng,R) are prescribed once and for all, given the mis-
orientation, the grain-boundary normal, and the Schmid tensors for the individual slip systems. Moreover,
these moduli are independent of time and dependent on x only when the grain boundary is nonplanar.

In most cases of interest the rate dependence is small. In fact, the rate-independent theory offers insight
into the implications of the grain boundary conditions. The rate independent limit of (10.18) is obtained by
formally passing to the limit as 6 — 0. The result for grain i and slip system o may be stated as follows:
when the microtraction lies within the yield range the slip on o at the grain-boundary vanishes,

< (=)' mg <, 9 =0, (10.20)

1

on the other hand, when the microtraction reaches either of the two yield limits, then slip of the right sign is
possible,

(-1 ms =+, 37 =0,
(=1)'¢ g ==, 7 <0. (10.21)

Thus, in contrast to the bulk yield conditions (6.2) and (6.3), the condition (10.20) and (10.21) mark a
transition in boundary conditions from the kinematic condition y* = 0 (cf. (8.2)) to a microtraction con-
dition prescribing & - ng. Further, grain boundary flow requires a content of GNDs sufficient to drive the
microtraction to its yield value, and for that reason would generally occur sometime after yield has occured
within the adjacent bulk material. The rate-independent limit of (10.19) has a strictly analogous form and
marks a change in boundary condition from null macroscopic slip to a condition on the common value of
the macroscopic shear stress.
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11. Strict plane strain
11.1. General remarks

Next, by (9.10), the microstress conditions (10.18) at the grain boundary take the form

c(si-g)st-ms = —({5i senyt, (S5 - @)s3 - mg = (3173 sen 7, (11.1)
a=1,...,4, relations that may also be written in terms of the slip gradients using (9.11). The result (11.1)
has an interesting consequence that is most easily discussed within a rate independent setting (6 = 0). The
grain-boundary conditions then require that for, say slip system « in grain 1, —c(s} - g)s} - ng lie between
+({{, with flow possible at the grain boundary on « only when one of the values £{{ is attained. Thus (11.1)
implies that

o

P23 P2 iC?S nly
s;og =0, {=(-1) S S8RV

C T (st )

i

for each grain i and each active slip system o for grain 7 that is nontangent in the sense that s’ - ng # 0. Then,
neglecting softening as described by (10.16), Zf is independent of time and, if the interface is planar, also
independent of x. In any event, if there are at least two active nontangent slip systems for grain 7, then g, is
temporally constant:

g =0 (11.2)

The foregoing conditions have interesting and important consequences. Consider a body under
monotone increasing loading, and neglect grain boundary softening or hardening (x = 1).

(a) In the initial stages following the onset of plastic flow, the Burgers vector g in each grain should be
small and hence the microtraction conditions (10.20) would imply that 9% = 0 for both grains and all slip
systems. Thus in this initial stage the grain boundary acts as a barrier for plastic slip. Moreover, the
constraints j* = 0 should induce increasing slip gradients on each of the slip systems near S and this in turn
should result in an increase in the magnitude of g at S in each of the grains. This effect should be local and
not apparent away from the grain boundary, where the accumulation of GNDs would be of lesser mag-
nitude. Thus we would expect |g| to exhibit a sharp peak during the initial stages of the loading.

(b) As the loading increases the Burgers vector g should increase in magnitude until for some grain i and
nontangent slip system «, s* - g; reaches the threshold value {?. At this point, although the loading continues
to increase, s? - g, can no longer increase. Further, if on a second nontangent slip system f in grain i, s,.ﬂ - g
reaches its threshold value, and if both s? - g; and s/ . g, remain at their threshold values, as would be ex-
pected, then g; itself cannot thereafter vary with time.

The behavior specified in (a) and (b), which is a consequence of the microtraction conditions at the grain
boundary seems consistent with the experiments of Sun et al. (1998, 2000).

Finally, if the material is mildly rate dependent, then one would expect the behaviour described in (a)
and (b), at least qualitatively.

11.2. An explicit solution: accumulation of GNDs at the grain boundary

We now describe an example, within the context of strict plane strain, for which an explicit analytical
solution can be found. As we shall see, the qualitative behavior of this solution is consistent with the
discussion in (a) and (b) above.

This solution involves a semi-infinite compressed specimen that abuts a rigid material and has two active
slip systems symmetrically oriented with respect to the axis of compression. The solution, which is exact,
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Fig. 1. Simplified model of a grain boundary between a grain with slip systems aligned for easy flow and a grain whose slip system
alignment severely inhibits flow.

may be viewed as an approximation to a situation involving a grain boundary between a grain with slip
systems aligned for easy flow and a grain whose slip system alignment severely inhibits flow (Fig. 1).
Precisely, we consider a single-crystal occupying the half-plane {(x;,x,) : x; > 0}, with grain boundary
the line x; = 0. Since the adjacent crystal, say crystal 2, is viewed as rigid, we may restrict attention to grain
1 and, without danger of confusion, omit the subscript 1 when it labels that grain. We assume that only two
slip systems are active and that the x;-axis is an axis of symmetry of the crystal; we therefore let
s' =cosfe; —sinde, m' =sinfe; +cosfe,,
2

(11.3)

s’ = cosfe; +sinde,, m’ = —sinje; +cosfe,,

with 6 a fixed angle and e; and e, the unit vectors that mark the x; and x, axes.

We restrict attention to a simplified situation in which all fields are independent of x,, and write x for x;.
The basic unknowns of the problem are the displacement u and the slips y*, and we assume that the dis-
placement is horizontal and the slip is symmetric with respect to the x-axis, i.e.,

u=uep, =y =y (11.4)

For simplicity, we restrict attention to the rate-independent theory, but allow for bulk hardening and
grain-boundary softening. We assume that the bulk hardening matrix £*# in (5.10) is constant and sym-
metric with &' = k?2. Thus ¢' = ¢ =: ¢ satisfies

G=kljl,  o(x,0)=0,>0, (11.5)

with k = k"' + k12 = k"2 + k2 > 0.

By symmetry and since the grain boundary is flat, #(R,ng, O7) is constant and independent of o. We
assume that the function / that characterizes grain-boundary softening is strictly positive and constant.
Thus, by (10.15) and (10.16), the slip resistances {; = {, =: { for the grain boundary evolve according to

s [-nll, Lo << =(0),

with {, = @, {, and & positive constants. The truncation of (11.6) at {, means that the grain boundary
cannot soften indefinitely.

We look for solutions of the equilibrium equation divT = 0 (cf. (3.5)) supplemented by the rate-inde-
pendent yield conditions (6.2) and (6.3). Regarding the boundary conditions, we assume that a compressive
load is applied at x = oo, i.¢.,

Te;, — —pe; asx — oo, (11.7)
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where the loading p = p(¢) > 0 is a positive, monotone increasing function of time. In conjunction with this
we assume that no microtraction acts on the crystal at infinity,

&-¢ —0 asx— oco. (11.8)
At the grain boundary x = 0, we have the condition
u(0,1)=0 (11.9)
as well as the rate-independent grain-boundary yield conditions (10.20) and (10.21).
In this simple setting, the displacement « and the slip y may be determined explicitly as functions of (x, 7).
Since p(¢) is invertible with respect to time, we shall write u and 7 as functions of x and the loading p. 12
We prefer to state the solution first and then give its derivation. Letting £ denote Young’s modulus and v

Poisson’s ratio, and recalling that ¢ and & are defined in (9.9) and (11.5), the parameters and functions
involved in the solution consist of:

(a) a boundary layer thickness

— v2) qin2
L= ,0(21 LN (11.10)
Esin® 0 4 2k(1 —v?)

(b) pressures

_ 2 -v) _2(1—v) %
P = 2v)sin0% P27 (1 —2v)sin0 ot ) and

_ o 2(1—v) o Lo—Co (esin®0 )

= asin0 | LTI Ak (11.11)

(¢) bulk and grain boundary forcing functions

13(1 = 2v) 2L(G — hr(p)
)= c(1—v) Sing(p p) and sp)= csin® @ — 2hL
(Note that s(p,) = r(p) and that r(p) is an increasing function of the loading, while s(p) is decreasing.)
Our solution may then be stated as follows:
(i) For p < p;, the material behaves elastically, i.e., y(x,p) = 0.
(i) For p1 <p < p»,

(. p) = —r(p)(1 —e™"), (11.13)

where 7(p), given by (11.12);, is a linear increasing function of p. In this loading range, y(0,p) = 0 and the
grain boundary is microclamped: p, is in fact the threshold for the activation of slip at the grain boundary.
Moreover, the GND edge densities for the two available slip systems coincide, and writing

(11.12)

pr = pp = pl,
we have
r(p)sin® _
(3, p) = “2LS0 o (11.14)

L

12 Rather than of x and 7. By rate independence, time only occurs as a parameter in the equations for u and 7, so that it is meaningful
to choose the loading as the parameter controlling the evolution of the solution.
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o(z,p)

T

Fig. 2. Typical plot of dislocation density ¢, (x,p) as a function of x for p > p;.

(Fig. 2). Hence, GNDs accumulate in a boundary layer with characteristic length L at x = 0. Further, in this
initial stage of plastic deformation the dislocation density at the grain boundary increases linearly with the
loading.

(iii) For p, <p < ps,

p(x,p) = —r(p) +s(p)e™", (11.15)
so that, since (0, p) # 0, grain boundary slip is activated. Moreover,
s(p)sin @ et

L
and, as in (it), GNDs accumulate in a boundary layer with characteristic length L, but now, as a conse-

quence of softening at the grain boundary, the GND density at x = 0 decreases as the loading increases.
(iv) For p = ps,

pr(x,p) = (11.16)

p(x,p) = —r(p) + s(ps)e ™", (11.17)
with s(p3) = 2L, /csin® 0, and hence
K sinf
p(e.p) =PI o (11.18)

In this stage the grain boundary cannot soften further, and the GND density remains constant at the
boundary as the loading increases (Fig. 3).
Note that, defining the average accumulated slip in bulk as

.1 R
Touik (P) = 1}1_1?010 R /0 7(x, p) dx,
the identity

r(P) = = Vour (P)s

which follows from (11.13), (11.15) and (11.17), shows that the bulk forcing function measures the accu-
mulated slip in bulk. Analogously, the difference between the grain boundary and bulk forcing functions,

[7(0,p)| 0-0,p)

D D2 P3 p D1 P2 p3 p

Fig. 3. Variation of accumulated slip |y(0, p)| and dislocation density g, (0, p) at the grain boundary as a function of the loading p.
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s(p) = r(p) =7(0,p), p>p,

measures the slip accumulated at the interface.
To prove (i), (i) and (iii), note first that, by (11.4), the displacement gradient and plastic strain tensor
have the form

_(ux O » ([ 7sin0 0
vu_(o 0)’ H _( 0 —ysing )’ (11.19)
so that, if the elasticity tensor is isotropic, the stress tensor T = Atr(E°)I + 2uE° is is given by
[ (A+2u)u, — 2pysin 0 0
= ( 0 Jte + 2uysinf )’ (11.20)

with 4 and u the Lamé moduli. Inserting this expression into the force balance divT = 0, we obtain the
differential equation

(A+20)uy — 20y, sin = 0, (11.21)
with the boundary conditions (cf. (11.7))
u=20 at x =0,
{(i+2,u)ux2,uysineﬁ —p asx — oo. (11.22)
By (11.21) and (11.22),,
1
u, = ——— 2uysin 0 — p), (11.23)

:}v+2u

a relation that with (11.22); allows us to determine the displacement as a function of the slip 7.
Consider now the generalized yield conditions (6.2) and (6.3). With the quadratic defect energy (9.9) we
have, by (9.6),

& =c(g-s")s*, g= —y,sinle,, (11.24)
and hence
dive' = —dive? = 5/ sin” 0.

From (3.6), (11.3) and (11.21), t! = —7* = usin 6(u, — 2y sin 0), or equivalently, using (11.23),

| N usind
T =7 =—
A42u

(2(2+ p)ysin b + p).

Inserting these expressions into (6.2) and (6.3), we obtain the yield conditions

Esin’ 0 (1 —2v)sinf

¢ ) -

0 < 5 7x SN 0 2(1_v2)y 20— ) p<o, 7=0, (11.25)
and
.2 .

c .5 Esin” 0 (1 —2v)sin0 .
—1 — —_ — 2 ,
(= A (11.26)
€ g Esin20ﬂ_(1—2v)sin0 o <0 '
z/xx 2(1_‘)2)/ Z(I—V) p= o, V\ 9

with £ is Young’s modulus and v is Poisson’s ratio.
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Consider now a monotone increasing loading program p = p(¢) > 0, with p(0) = 0 and y(x,0) = 0. Then
for some initial interval of time the elastic-range inequality (11.25) has the form
(1 —2v)sinf
2(1—-v)
the solution therefore remains elastic until p = p;, which establishes (i).

When p = p; the lower yield condition in (11.25) is attained; thus for p > p, the crystal will flow with
7 <0, so that

—0p < — 00, V = 07

7<0. (11.27)
Thus the grain-boundary relations (10.20) and (10.21), for i = 2, take the form

57.0.p)sin’0 > =L, 3(0,p) = 0 (11.28)
and

%vx(ovp) sin’ 0 = ¢, §(0,p) <0, (11.29)

where { evolves according to the softening equation (11.6).
Next, integrating the hardening equation (11.5) we obtain

o = —ky + o, (11.30)
which, when inserted into (11.26), yields the ordinary differential equation
1
o= 23 (4 7(p) = 0, (11.31)

The associated boundary condition at infinity follows from (11.8) and (11.24):
7, — 0 asx— oo. (11.32)

Since 7(0,p) =0 for p = p;, we may conclude from (11.28) that y(0,p) = 0 for p > p, as long as the
inequality in (11.28) is satisfied. The solution of (11.31) subject to (11.32) and

2(0,p) = 0 (11.33)
is (11.13). By (11.28), the solution (11.13) will hold as long as
cr(p) sin® 0
o > —{o, (11.34)

or equivalently, by (11.12);, as long as p < p, with p, given by (11.11),. To obtain (11.14), it is sufficient to
note that, by (2.4), the GND edge densities of the two slip systems coincide and are proportional to the slip
gradient:

pL = pi = —7.sin0. (11.35)

When p > p,, slip is activated at the grain boundary, and (0, p) is no longer required to vanish. The
basic equation (11.31) for slip in bulk remains unchanged, as well as the boundary conditions (11.32), but
(11.33) is now replaced by the grain boundary condition (11.29):

%yx(o,p) sin? 0 = —¢. (11.36)

Integrating the softening equation (11.6) we obtain
{=hy+ (o, (11.37)
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which, when inserted into (11.36), yields
C .
57:(0.) sin® 0 + hy(0,p) + {, = 0. (11.38)

The solution of (11.31) subject to the boundary conditions (11.38) and (11.32) yields (11.15). Finally,
(11.16) follows from (11.35).

The boundary condition (11.38) holds as long as 4y(0,p) + {, > {,. A straightforward computation
shows that , is reached at p = p3, so that, for p > ps, the grain boundary condition (11.36) becomes

%vx(O,p) sin® 0 = —{y, (11.39)

which yields (11.17).
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